Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38869565

RESUMEN

Background. The aim of the study was to synthesize liposomal nanoparticles loaded with temozolomide and ferucarbotran (LTF) and to evaluate the theranostic effect of LTF in the glioma model. Methods. We synthesized an LTF that could pass through the Blood Brain Barrier (BBB) and localize in brain tumor tissue with the help of magnet guidance. We examined the chemical characteristics. Cellular uptake and cytotoxicity studies were conducted in vitro. A biodistribution and tumor inhibition study was conduted using an in vivo glioma model. Results. The particle size and surface charge of LTF show 108 nm and -38 mV, respectively. Additionally, the presence of ferucarbotran significantly increased the contrast agent effect of glioma compared to the control group in MR imaging. Magnet-guided LTF significantly reduced the tumor size compared to control and other groups. Furthermore, compared to the control group, our results demonstrate a significant inhibition in brain tumor size and an increase in lifespan. Conclusions. These findings suggest that the LTF with magnetic guidance represents a novel approach to address current obstacles, such as BBB penetration of nanoparticles and drug resistance. Magnet-guided LTF is able to enhance therapeutic efficacy in mouse brain glioma.

2.
Transl Stroke Res ; 15(2): 388-398, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-36639607

RESUMEN

There is insufficient evidence on the effect of nanoparticles, particularly liposomes loaded with a statin, on acute ischemic stroke. We investigated the impact of atorvastatin-loaded PEG (polyethylene glycol) conjugated liposomes (LipoStatin) on the outcomes in rats with cerebral ischemia-reperfusion. PEGylated liposome loaded with atorvastatin was developed as a nanoparticle to specifically accumulate in an ischemic region and release the drug to ameliorate the harmful effects of the stroke. LipoStatin was administered to rats with transient middle cerebral artery occlusion through the tail vein immediately after reperfusion (LipoStatin group). LipoStatin efficiently accumulated at the cerebral ischemic injury site of the rat. The LipoStatin group showed a significantly reduced infarct volume (p < 0.01) in brain micro-MR imaging and improved neurological function recovery compared to the control group (p < 0.05). In addition, markedly improved brain metabolism using fluorine-18 fluorodeoxyglucose micro-PET/CT imaging was demonstrated in the LipoStatin group compared with the control group (p < 0.01). Mechanistically, as a result of evaluation through IL-1 beta, TNF-alpha, ICAM-1, and Iba-1 mRNA expression levels at 5 days after cerebral ischemia, LipoStatin showed significant anti-inflammatory effects. Protein expression of occludin, JAM-A, Caveolin-1, and eNOS by western blot at 3 days and fluorescent images at 7 days showed considerable recovery of blood-brain barrier breakdown and endothelial dysfunction. PEGylated LipoStatin can be more effectively delivered to the ischemic brain and may have significant neuroprotective effects. Thus, PEGylated LipoStatin can be further developed as a promising targeted therapy for ischemic stroke and other major vascular diseases.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Ratas , Animales , Atorvastatina/uso terapéutico , Liposomas/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/tratamiento farmacológico , Polietilenglicoles/uso terapéutico
3.
Biomater Sci ; 11(18): 6177-6192, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37504889

RESUMEN

Radiation therapy (RT) is a mainstream clinical approach in cancer treatment. However, the therapeutic efficacy of RT is greatly hindered by the presence of excessive hydrogen peroxide (H2O2) in the hypoxic region of the solid tumor, thus leading to tumor recurrence and metastasis. Herein, a thioketal-linked amphiphilic nano-assembly (MTS) loaded with hydrophobic manganese oxide (HMO) nanoparticles (MTS@HMO) is examined as a promising multi-purpose reactive oxygen species (ROS)-catalytic nanozyme for transforming an RT-resistant hypoxic tumor microenvironment (TME) into an RT-susceptible one by scavenging ROS in the hypoxic core of the solid tumor. After intravenous injection, the MTS@HMO nano-assembly was able to sense and be degraded by the abundant ROS in the hypoxic TME, thereby releasing HMO particles for subsequent scavenging of H2O2. The oxygen generated during peroxide scavenging then relieved the hypoxic TME, thereby resulting in an increased sensitivity of the hypoxic tumor tissue towards RT. Moreover, the in situ hypoxic status was monitored via the T1-enhanced magnetic resonance (MR) imaging of the Mn2+ ions generated by the ROS-mediated degradation of HMO. The in vitro results demonstrated a significant H2O2 elimination and enhanced oxygen generation after the treatment of the MTS@HMO nano-assembly with tumor cells under hypoxic conditions, compared to the control MTS group. In addition, the combination of RT and pre-treatment with MTS@HMO nano-assembly significantly amplified the permanent DNA strand breaks in tumor cells compared to the control RT group. More importantly, the in vivo results proved that the systemic injection of the MTS@HMO nano-assembly prior to RT irradiation enhanced the RT-mediated tumor suppression and down-regulated the hypoxic marker of HIF-1α in the solid tumor compared to the control RT group. Overall, the present work demonstrates the great potential of the versatile ROS-catalytic hypoxia modulating strategy using the MTS@HMO nano-assembly to enhance the RT-induced antitumor efficacy in hypoxic solid tumors.


Asunto(s)
Neoplasias del Colon , Fotoquimioterapia , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/química , Línea Celular Tumoral , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Hipoxia/patología , Oxígeno/metabolismo , Neoplasias del Colon/radioterapia , Neoplasias del Colon/tratamiento farmacológico , Microambiente Tumoral , Fotoquimioterapia/métodos
4.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830392

RESUMEN

Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Antígenos/uso terapéutico , Inmunoterapia , Neoplasias/terapia , Antígenos/inmunología , Humanos , Nanoestructuras/uso terapéutico , Neoplasias/inmunología , Polímeros/uso terapéutico
5.
Front Mol Biosci ; 8: 693909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026853

RESUMEN

[This corrects the article DOI: 10.3389/fmolb.2020.610533.].

6.
Int J Mol Sci ; 21(23)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291226

RESUMEN

Various neuroprotective agents have been studied for the treatment of retinal ganglion cell (RGC) diseases, but issues concerning the side effects of systemically administered drugs and the short retention time of intravitreally injected drugs limit their clinical applications. The current study aimed to evaluate the neuroprotective effects of intravitreally injected trichostatin A (TSA)-loaded liposomes in a mouse model of optic nerve crush (ONC) and determine whether TSA-loaded liposomes have therapeutic potential in RGC diseases. The histone deacetylase inhibitor, TSA, was incorporated into polyethylene glycolylated liposomes. C57BL/6J mice were treated with an intravitreal injection of TSA-loaded liposomes and liposomes loaded with a lipophilic fluorescent dye for tracking, immediately after ONC injury. The expression of macroglial and microglial cell markers (glial fibrillary acidic protein and ionized calcium binding adaptor molecule-1), RGC survival, and apoptosis were assessed. We found that the liposomes reached the inner retina. Their fluorescence was detected for up to 10 days after the intravitreal injection, with peak intensity at 3 days postinjection. Intravitreally administered TSA-loaded liposomes significantly decreased reactive gliosis and RGC apoptosis and increased RGC survival in a mouse model of ONC. Our results suggest that TSA-loaded liposomes may help in the treatment of various RGC diseases.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Apoptosis , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/administración & dosificación , Ácidos Hidroxámicos/uso terapéutico , Inyecciones Intravítreas , Liposomas/química , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Células Ganglionares de la Retina/metabolismo
7.
Acta Biomater ; 116: 356-367, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32927089

RESUMEN

The development of nanoparticles that can be used as stimuli-responsive drug carriers for the treatment of different diseases has been an emerging area of research. In this study, we designed a chitosan-bilirubin micelle (ChiBil) carrying losartan, which is responsive to intrinsic reactive oxygen species (ROS), for the treatment of hepatic fibrosis. Because bilirubin is hydrophobic in nature, its carboxyl group was conjugated to an amine group from chitosan using EDC-NHS chemistry to form an amphiphilic conjugate, ChiBil. Losartan is an angiotensin receptor blocker that reduces hepatic fibrosis, and it was used as the therapeutic payload in this study to form ChiBil-losartan micelles. The release characteristics of ChiBil-losartan were tested by ROS generation to confirm losartan release. Human hepatic stellate cell line LX2 was found to be the best in vitro model for the study. The reduction of hepatic stellate cell activation after treatment with ChiBil-losartan was analyzed based on the expression of alpha-smooth muscle actin (α-SMA) in both in vitro and in vivo studies. Advanced liver fibrosis was induced in C3H/HeN mice using a thioacetamide (TAA) via intraperitoneal injection and 10% ethanol (EtOH) in their drinking water. In addition, the hydroxyproline levels, histopathological evaluation, and mRNA quantification in the liver showed a decreased collagen content in the treated groups compared to that in the untreated control group. Macrophage infiltration studies and qPCR studies of inflammatory markers also proved the reduction of hepatic fibrosis in the treatment group. The intravenous administration of ChiBil-losartan resulted in decreased fibrosis in a TAA/EtOH-induced liver fibrosis mouse model. The in vitro and in vivo results suggest that the ROS stimuli-responsive ChiBil nanoparticles carrying losartan may be a potent therapeutic option for the treatment of hepatic fibrosis. The combined effect of losartan and bilirubin exhibited a decreased hepatic fibrosis both in vitro and in vivo.


Asunto(s)
Quitosano , Animales , Bilirrubina , Fibrosis , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C3H , Especies Reactivas de Oxígeno , Nanomedicina Teranóstica
8.
Sci Rep ; 10(1): 9349, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32493954

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Front Mol Biosci ; 7: 610533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392264

RESUMEN

Cancer is a disease that affects a large number of people all over the world. For treating cancer, nano-drug delivery system has been introduced recently with objective of increasing therapeutic efficiency of chemotherapeutic drug. The main characteristics of this system are the encapsulation of the insoluble chemotherapeutic cargo, increasing the period of circulation in the body, as well as the delivery of the drug at that specific site. Currently, the nano-drug delivery system based on the stimuli response is becoming more popular because of the extra features for controlling the drug release based on the internal atmosphere of cancer. This review provides a summary of different types of internal (pH, redox, enzyme, ROS, hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspective for upcoming times.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...