Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 29(12): 1397-1409.e6, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34520738

RESUMEN

Type IV pili (T4P) are distinctive dynamic filaments at the surface of many bacteria that can rapidly extend and retract and withstand strong forces. T4P are important virulence factors in many human pathogens, including Enterohemorrhagic Escherichia coli (EHEC). The structure of the EHEC T4P has been determined by integrating nuclear magnetic resonance (NMR) and cryo-electron microscopy data. To better understand pilus assembly, stability, and function, we performed a total of 108 ms all-atom molecular dynamics simulations of wild-type and mutant T4P. Extensive characterization of the conformational landscape of T4P in different conditions of temperature, pH, and ionic strength is complemented with targeted mutagenesis and biochemical analyses. Our simulations and NMR experiments reveal a conserved set of residues defining a calcium-binding site at the interface between three pilin subunits. Calcium binding enhances T4P stability ex vivo and in vitro, supporting the role of this binding site as a potential pocket for drug design.


Asunto(s)
Escherichia coli Enterohemorrágica/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Simulación de Dinámica Molecular , Sitios de Unión , Microscopía por Crioelectrón
2.
Microbiologyopen ; 8(11): e915, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31496120

RESUMEN

Bacterial colonization of the urogenital tract is limited by innate defenses, including the production of antimicrobial peptides (AMPs). Uropathogenic Escherichia coli (UPEC) resist AMP-killing to cause a range of urinary tract infections (UTIs) including asymptomatic bacteriuria, cystitis, pyelonephritis, and sepsis. UPEC strains have high genomic diversity and encode numerous virulence factors that differentiate them from non-UTI-causing strains, including ompT. As OmpT homologs cleave and inactivate AMPs, we hypothesized that UPEC strains from patients with symptomatic UTIs have high OmpT protease activity. Therefore, we measured OmpT activity in 58 clinical E. coli isolates. While heterogeneous OmpT activities were observed, OmpT activity was significantly greater in UPEC strains isolated from patients with symptomatic infections. Unexpectedly, UPEC strains exhibiting the greatest protease activities harbored an additional ompT-like gene called arlC (ompTp). The presence of two OmpT-like proteases in some UPEC isolates led us to compare the substrate specificities of OmpT-like proteases found in E. coli. While all three cleaved AMPs, cleavage efficiency varied on the basis of AMP size and secondary structure. Our findings suggest the presence of ArlC and OmpT in the same UPEC isolate may confer a fitness advantage by expanding the range of target substrates.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/análisis , Proteínas de Escherichia coli/análisis , Péptido Hidrolasas/análisis , Escherichia coli Uropatógena/enzimología , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Hidrólisis , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Reacción en Cadena de la Polimerasa , Especificidad por Sustrato , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/aislamiento & purificación , Factores de Virulencia/análisis , Factores de Virulencia/química , Factores de Virulencia/genética , Secuenciación Completa del Genoma
3.
Nat Commun ; 9(1): 2027, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795186

RESUMEN

Many bacterial proteins require specific subcellular localization for function. How Escherichia coli proteins localize at one pole, however, is still not understood. Here, we show that the DnaK (HSP70) chaperone controls unipolar localization of the Shigella IpaC type III secretion substrate. While preventing the formation of lethal IpaC aggregates, DnaK promoted the incorporation of IpaC into large and dynamic complexes (LDCs) restricted at the bacterial pole through nucleoid occlusion. Unlike stable polymers and aggregates, LDCs show dynamic behavior indicating that nucleoid occlusion also applies to complexes formed through transient interactions. Fluorescence recovery after photobleaching analysis shows DnaK-IpaC exchanges between opposite poles and DnaKJE-mediated incorporation of immature substrates in LDCs. These findings reveal a key role for LDCs as reservoirs of functional DnaK-substrates that can be rapidly mobilized for secretion triggered upon bacterial contact with host cells.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína , Antígenos Bacterianos/genética , División Celular/fisiología , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Interacciones Microbiota-Huesped/fisiología , Microscopía Intravital , Mutagénesis Sitio-Dirigida , Agregado de Proteínas/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Methods Mol Biol ; 1764: 291-305, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605922

RESUMEN

Bacterial surface appendages of the type 4 pilus superfamily play diverse roles in adherence, aggregation, motility, signaling, and macromolecular transport. Here we describe two analytical approaches to study assembly of type 4 pili and of pseudopili produced by type 2 protein secretion systems: the shearing assay and immunofluorescence microscopy. These complementary antibody-based methods allow for semiquantitative analysis of fiber assembly. The shearing assay can be scaled up to yield crude extracts of pili that can be further analyzed by electron and atomic force microscopy or by mass spectrometry.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Fimbrias Bacterianas/metabolismo , Klebsiella oxytoca/metabolismo , Sustancias Macromoleculares/metabolismo , Microscopía Fluorescente/métodos , Adhesión Bacteriana , Fimbrias Bacterianas/química
5.
Nat Microbiol ; 2(12): 1686-1695, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28993624

RESUMEN

Many Gram-negative bacteria use type 2 secretion systems (T2SSs) to secrete proteins involved in virulence and adaptation. Transport of folded proteins via T2SS nanomachines requires the assembly of inner membrane-anchored fibres called pseudopili. Although efficient pseudopilus assembly is essential for protein secretion, structure-based functional analyses are required to unravel the mechanistic link between these processes. Here, we report an atomic model for a T2SS pseudopilus from Klebsiella oxytoca, obtained by fitting the NMR structure of its calcium-bound subunit PulG into the ~5-Å-resolution cryo-electron microscopy reconstruction of assembled fibres. This structure reveals the comprehensive network of inter-subunit contacts and unexpected features, including a disordered central region of the PulG helical stem, and highly flexible C-terminal residues on the fibre surface. NMR, mutagenesis and functional analyses highlight the key role of calcium in PulG folding and stability. Fibre disassembly in the absence of calcium provides a basis for pseudopilus length control, essential for protein secretion, and supports the Archimedes screw model for the type 2 secretion mechanism.


Asunto(s)
Calcio/fisiología , Bacterias Gramnegativas/metabolismo , Klebsiella oxytoca/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dicroismo Circular , Microscopía por Crioelectrón , Escherichia coli/genética , Fimbrias Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Marcaje Isotópico , Klebsiella oxytoca/ultraestructura , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Transporte de Proteínas , Sistemas de Secreción Tipo II/química
6.
Mol Microbiol ; 105(2): 211-226, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28486768

RESUMEN

Nanomachines belonging to the type IV filament (Tff) superfamily serve a variety of cellular functions in prokaryotes, including motility, adhesion, electrical conductance, competence and secretion. The type 2 secretion system (T2SS) Tff member assembles a short filament called pseudopilus that promotes the secretion of folded proteins from the periplasm across the outer membrane of Gram-negative bacteria. A combination of structural, biochemical, imaging, computational and in vivo approaches had led to a working model for the assembled nanomachine. High-resolution cryo-electron microscopy and tomography provided the first view of several homologous Tff nanomachines in the cell envelope and revealed the structure of the outer membrane secretin channel, challenging current models of the overall stoichiometry of the T2SS. In addition, recent insights into exoprotein substrate features and interactions with the T2SS have led to new questions about the dynamics of the system and the role of the plasma membrane in substrate presentation. This micro-review will highlight recent advances in the field of type 2 secretion and discuss approaches that can be used to reach a mechanistic understanding of exoprotein recognition, integration into the machine and secretion.


Asunto(s)
Sistemas de Secreción Tipo II/metabolismo , Sistemas de Secreción Tipo II/ultraestructura , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Secuencia de Bases , Microscopía por Crioelectrón/métodos , Bacterias Gramnegativas/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Unión Proteica , Pliegue de Proteína , Secretina/química , Relación Estructura-Actividad
7.
Infect Immun ; 85(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27872242

RESUMEN

Citrobacter rodentium is a murine pathogen used to model intestinal infections caused by the human diarrheal pathogens enterohemorrhagic and enteropathogenic Escherichia coli During infection, bacteria use two-component systems (TCSs) to detect changing environmental cues within the host, allowing for rapid adaptation by altering the expression of specific genes. In this study, 26 TCSs were identified in C. rodentium, and quantitative PCR (qPCR) analysis showed that they are all expressed during murine infection. These TCSs were individually deleted, and the in vitro and in vivo effects were analyzed to determine the functional consequences. In vitro analyses only revealed minor differences, and surprisingly, type III secretion (T3S) was only affected in the ΔarcA strain. Murine infections identified 7 mutants with either attenuated or increased virulence. In agreement with the in vitro T3S assay, the ΔarcA strain was attenuated and defective in colonization and cell adherence. The ΔrcsB strain was among the most highly attenuated strains. The decrease in virulence of this strain may be associated with changes to the cell surface, as Congo red binding was altered, and qPCR revealed that expression of the wcaA gene, which has been implicated in colanic acid production in other bacteria, was drastically downregulated. The ΔuvrY strain exhibited increased virulence compared to the wild type, which was associated with a significant increase in bacterial burden within the mesenteric lymph nodes. The systematic analysis of virulence-associated TCSs and investigation of their functions during infection may open new avenues for drug development.


Asunto(s)
Citrobacter rodentium/fisiología , Infecciones por Enterobacteriaceae/microbiología , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrobacter rodentium/patogenicidad , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/mortalidad , Femenino , Técnicas de Inactivación de Genes , Humanos , Ratones , Fenotipo , Virulencia/genética
8.
J Bacteriol ; 197(22): 3583-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26350132

RESUMEN

UNLABELLED: Bacterial proteases contribute to virulence by cleaving host or bacterial proteins to promote survival and dissemination. Omptins are a family of proteases embedded in the outer membrane of Gram-negative bacteria that cleave various substrates, including host antimicrobial peptides, with a preference for cleaving at dibasic motifs. OmpT, the enterohemorrhagic Escherichia coli (EHEC) omptin, cleaves and inactivates the human cathelicidin LL-37. Similarly, the omptin CroP, found in the murine pathogen Citrobacter rodentium, which is used as a surrogate model to study human-restricted EHEC, cleaves the murine cathelicidin-related antimicrobial peptide (CRAMP). Here, we compared the abilities of OmpT and CroP to cleave LL-37 and CRAMP. EHEC OmpT degraded LL-37 and CRAMP at similar rates. In contrast, C. rodentium CroP cleaved CRAMP more rapidly than LL-37. The different cleavage rates of LL-37 and CRAMP were independent of the bacterial background and substrate sequence specificity, as OmpT and CroP have the same preference for cleaving at dibasic sites. Importantly, LL-37 was α-helical and CRAMP was unstructured under our experimental conditions. By altering the α-helicity of LL-37 and CRAMP, we found that decreasing LL-37 α-helicity increased its rate of cleavage by CroP. Conversely, increasing CRAMP α-helicity decreased its cleavage rate. This structural basis for CroP substrate specificity highlights differences between the closely related omptins of C. rodentium and E. coli. In agreement with previous studies, this difference in CroP and OmpT substrate specificity suggests that omptins evolved in response to the substrates present in their host microenvironments. IMPORTANCE: Omptins are recognized as key virulence factors for various Gram-negative pathogens. Their localization to the outer membrane, their active site facing the extracellular environment, and their unique catalytic mechanism make them attractive targets for novel therapeutic strategies. Gaining insights into similarities and variations between the different omptin active sites and subsequent substrate specificities will be critical to develop inhibitors that can target multiple omptins. Here, we describe subtle differences between the substrate specificities of two closely related omptins, CroP and OmpT. This is the first reported example of substrate conformation acting as a structural determinant for omptin activity between OmpT-like proteases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Citrobacter rodentium/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Péptido Hidrolasas/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Proteínas de la Membrana Bacteriana Externa/genética , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Péptido Hidrolasas/genética , Conformación Proteica , Serina Endopeptidasas/genética
9.
Infect Immun ; 83(6): 2300-11, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25824836

RESUMEN

Bacterial proteases are important virulence factors that inactivate host defense proteins and contribute to tissue destruction and bacterial dissemination. Outer membrane proteases of the omptin family, exemplified by Escherichia coli OmpT, are found in some Gram-negative bacteria. Omptins cleave a variety of substrates at the host-pathogen interface, including plasminogen and antimicrobial peptides. Multiple omptin substrates relevant to infection have been identified; nonetheless, an effective omptin inhibitor remains to be found. Here, we purified native CroP, the OmpT ortholog in the murine pathogen Citrobacter rodentium. Purified CroP was found to readily cleave both a synthetic fluorescence resonance energy transfer substrate and the murine cathelicidin-related antimicrobial peptide. In contrast, CroP was found to poorly activate plasminogen into active plasmin. Although classical protease inhibitors were ineffective against CroP activity, we found that the serine protease inhibitor aprotinin displays inhibitory potency in the micromolar range. Aprotinin was shown to act as a competitive inhibitor of CroP activity and to interfere with the cleavage of the murine cathelicidin-related antimicrobial peptide. Importantly, aprotinin was able to inhibit not only CroP but also Yersinia pestis Pla and, to a lesser extent, E. coli OmpT. We propose a structural model of the aprotinin-omptin complex in which Lys15 of aprotinin forms salt bridges with conserved negatively charged residues of the omptin active site.


Asunto(s)
Aprotinina/farmacología , Citrobacter rodentium/enzimología , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Dominio Catalítico , Catelicidinas/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Conformación Proteica , Serina Proteasas/genética , Especificidad de la Especie
10.
Infect Immun ; 83(5): 1919-28, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25712925

RESUMEN

Citrobacter rodentium is a murine intestinal pathogen used as a model for the foodborne human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. During infection, these pathogens use two-component signal transduction systems to detect and adapt to changing environmental conditions. In E. coli, the CpxRA two-component signal transduction system responds to envelope stress by modulating the expression of a myriad of genes. Quantitative real-time PCR showed that cpxRA was expressed in the colon of C57BL/6J mice infected with C. rodentium. To determine whether CpxRA plays a role during C. rodentium infection, a cpxRA deletion strain was generated and found to have a colonization defect during infection. This defect was independent of an altered growth rate or a defective type III secretion system, and single-copy chromosomal complementation of cpxRA restored virulence. The C. rodentium strains were then tested in C3H/HeJ mice, a lethal intestinal infection model. Mice infected with the ΔcpxRA strain survived infection, whereas mice infected with the wild-type or complemented strains succumbed to infection. Furthermore, we found that the cpxRA expression level was higher during early infection than at a later time point. Taken together, these data demonstrate that the CpxRA two-component signal transduction system is essential for the in vivo virulence of C. rodentium. In addition, these data suggest that fine-tuned cpxRA expression is important for infection. This is the first study that identifies a C. rodentium two-component transduction system required for pathogenesis. This study further indicates that CpxRA is an interesting target for therapeutics against enteric pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/patogenicidad , Enteritis/microbiología , Proteínas Quinasas/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Citrobacter rodentium/genética , Colon/microbiología , Enteritis/patología , Eliminación de Gen , Prueba de Complementación Genética , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteínas Quinasas/genética , Análisis de Supervivencia , Factores de Virulencia/genética
11.
PLoS One ; 8(12): e82475, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324796

RESUMEN

Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are food-borne pathogens that colonize the small intestine and colon, respectively. To cause disease, these pathogens must overcome the action of different host antimicrobial peptides (AMPs) secreted into these distinct niches. We have shown previously that EHEC expresses high levels of the OmpT protease to inactivate the human cathelicidin LL-37, an AMP present in the colon. In this study, we investigate the mechanisms used by EPEC to resist human α-defensin 5 (HD-5), the most abundant AMP in the small intestine. Quantitative PCR was used to measure transcript levels of various EPEC surface structures. High transcript levels of gfcA, a gene required for group 4 capsule (G4C) production, were observed in EPEC, but not in EHEC. The unencapsulated EPEC ∆gfcA and EHEC wild-type strains were more susceptible to HD-5 than EPEC wild-type. Since the G4C is composed of the same sugar repeats as the lipopolysaccharide O-antigen, an -antigen ligase (waaL) deletion mutant was generated in EPEC to assess its role in HD-5 resistance. The ∆waaL EPEC strain was more susceptible to HD-5 than both the wild-type and ∆gfcA strains. The ∆gfcA∆waaL EPEC strain was not significantly more susceptible to HD-5 than the ∆waaL strain, suggesting that the absence of -antigen influences G4C formation. To determine whether the G4C and -antigen interact with HD-5, total polysaccharide was purified from wild-type EPEC and added to the ∆gfcA∆waaL strain in the presence of HD-5. The addition of exogenous polysaccharide protected the susceptible strain against HD-5 killing in a dose-dependent manner, suggesting that HD-5 binds to the polysaccharides present on the surface of EPEC. Altogether, these findings indicate that EPEC relies on both the G4C and the -antigen to resist the bactericidal activity of HD-5.


Asunto(s)
Antiinfecciosos/farmacología , Cápsulas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Antígenos O/genética , alfa-Defensinas/farmacología , Cápsulas Bacterianas/metabolismo , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Antígenos O/metabolismo , Polisacáridos Bacterianos/farmacología , Eliminación de Secuencia
12.
FEMS Microbiol Lett ; 345(1): 64-71, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23710656

RESUMEN

Uropathogenic Escherichia coli (UPEC) strains are among the most prevalent causative agents of urinary tract infections. To establish infection, UPEC must overcome the bactericidal action of host antimicrobial peptides. Previously, the enterohaemorrhagic E. coli outer membrane protease, OmpT, was shown to degrade and inactivate the human antimicrobial peptide LL-37. This study aims to investigate the involvement of UPEC OmpT in LL-37 degradation. An ompT deletion mutant was generated in the prototypical UPEC strain CFT073. Western blot analysis showed that the OmpT protein level is moderate in CFT073. In agreement, OmpT was shown to partially cleave LL-37. However, no difference in the minimum inhibitory concentration of LL-37 was observed between CFT073 and the ompT mutant. Plasmid complementation of ompT, which led to increased OmpT levels, resulted in complete cleavage of LL-37 and a fourfold increase in the minimum inhibitory concentration. The analysis of other UPEC isolates showed similar OmpT activity levels as CFT073. Although UPEC OmpT can cleave LL-37, we conclude that the low level of OmpT limits its contribution to LL-37 resistance. Collectively, these data suggest that UPEC OmpT is likely accompanied by other LL-37 resistance mechanisms.


Asunto(s)
Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Péptido Hidrolasas/metabolismo , Escherichia coli Uropatógena/enzimología , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/genética , Humanos , Péptido Hidrolasas/genética , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética , Catelicidinas
13.
J Bacteriol ; 195(4): 740-56, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23222727

RESUMEN

The enteropathogenic Escherichia coli (EPEC) multicargo chaperone CesT interacts with at least 10 effector proteins and is central to pathogenesis. CesT has been implicated in coordinating effector hierarchy, although the mechanisms behind this regulation are poorly understood. To address this question, we set out to functionally characterize CesT with respect to roles in (i) effector binding, (ii) effector recruitment to the type III secretion system (T3SS), and (iii) effector translocation into host cells. A CesT variant expression library was screened in EPEC using a newly developed semi-high-throughput secretion assay. Among many deficient CesT variants, a predominant number were localized to a novel CesT C-terminal region. These CesT C-terminal variants exhibited normal effector binding yet reduced effector secretion levels. Structural correlation and thermal spectroscopy analyses of purified CesT variants implicated multiple surface-exposed residues, a terminal helix region, and a flexible C-terminal triple-serine stretch in effector secretion. Site-directed mutagenesis of the flexible CesT C-terminal triple-serine sequence produced differential effector secretion, implicating this region in secretion events. Infection assays further indicated that the C-terminal region of CesT was important for NleA translocation into host cells but was dispensable for Tir translocation. The findings implicate the CesT C terminus in effector secretion and contribute to a model for multiple-cargo chaperone function and effector translocation into host cells during infection.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Chaperonas Moleculares/metabolismo , Alelos , Sustitución de Aminoácidos , Bacteriocinas , Biología Computacional , ADN Bacteriano/genética , ADN Recombinante , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Variación Genética , Modelos Moleculares , Chaperonas Moleculares/genética , Mutagénesis Sitio-Dirigida , Biblioteca de Péptidos , Péptidos , Unión Proteica , Conformación Proteica , Alineación de Secuencia
14.
Gut Microbes ; 3(6): 556-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22895086

RESUMEN

Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are enteric human pathogens that colonize the large and small intestines, respectively. To establish infection EHEC and EPEC must overcome innate host defenses, such as antimicrobial peptides (AMPs) produced by the intestinal epithelium. Gram-negative pathogens have evolved different mechanisms to resist AMPs, including outer-membrane proteases that degrade AMPs. We showed that the protease OmpT degrades the human AMP LL-37 more rapidly in EHEC than in EPEC. Promoter-swap experiments showed that this is due to differences in the promoters of the two genes, leading to greater ompT expression and subsequently greater levels of OmpT in EHEC. Here, we propose that the different ompT expression in EHEC and EPEC reflects the varying levels of LL-37 throughout the human intestinal tract. These data suggest that EHEC and EPEC adapted to their specific niches by developing distinct AMP-specific resistance mechanisms.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Microbiana , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/patogenicidad , Evasión Inmune , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Humanos , Péptido Hidrolasas/metabolismo , Regiones Promotoras Genéticas , Proteolisis , Catelicidinas
15.
Cell Microbiol ; 14(8): 1206-18, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22432415

RESUMEN

Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are food-borne pathogens that cause severe diarrhoeal disease in humans. Citrobacter rodentium is a related mouse pathogen that serves as a small animal model for EPEC and EHEC infections. EPEC, EHEC and C. rodentium translocate bacterial virulence proteins directly into host cells via a type III secretion system (T3SS). Non-LEE-encoded effector A (NleA) is a T3SS effector that is common to EPEC, EHEC and C. rodentium and is required for bacterial virulence. NleA localizes to the host cell secretory pathway and inhibits vesicle trafficking by interacting with the Sec24 subunit of mammalian coatamer protein II complex (COPII). Mammalian cells express four paralogues of Sec24 (Sec24A-D), which mediate selection of cargo proteins for transport and possess distinct, but overlapping cargo specificities. Here, we show that NleA binds Sec24A-D with two distinct mechanisms. An NleA protein variant with greatly diminished interaction with all Sec24 paralogues does not properly localize, does not inhibit COPII-mediated vesicle budding, and does not confer virulence in the mouse infection model. Together, this work provides strong evidence that the interaction and inhibition of COPII by NleA is an important aspect of EPEC- and EHEC-mediated disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/fisiología , Proteínas de Transporte Vesicular/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vesículas Cubiertas por Proteínas de Revestimiento/microbiología , Citrobacter rodentium/metabolismo , Femenino , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Ratones , Ratones Endogámicos C3H , Dominios PDZ , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Vías Secretoras , Eliminación de Secuencia , Proteínas de Transporte Vesicular/química , Factores de Virulencia/química , Factores de Virulencia/genética
16.
Infect Immun ; 80(2): 483-92, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22144482

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are food-borne pathogens that cause serious diarrheal diseases. To colonize the human intestine, these pathogens must overcome innate immune defenses such as antimicrobial peptides (AMPs). Bacterial pathogens have evolved various mechanisms to resist killing by AMPs, including proteolytic degradation of AMPs. To examine the ability of the EHEC and EPEC OmpT outer membrane (OM) proteases to degrade α-helical AMPs, ompT deletion mutants were generated. Determination of MICs of various AMPs revealed that both mutant strains are more susceptible than their wild-type counterparts to α-helical AMPs, although to different extents. Time course assays monitoring the degradation of LL-37 and C18G showed that EHEC cells degraded both AMPs faster than EPEC cells in an OmpT-dependent manner. Mass spectrometry analyses of proteolytic fragments showed that EHEC OmpT cleaves LL-37 at dibasic sites. The superior protection provided by EHEC OmpT compared to EPEC OmpT against α-helical AMPs was due to higher expression of the ompT gene and, in turn, higher levels of the OmpT protein in EHEC. Fusion of the EPEC ompT promoter to the EHEC ompT open reading frame resulted in decreased OmpT expression, indicating that transcriptional regulation of ompT is different in EHEC and EPEC. We hypothesize that the different contributions of EHEC and EPEC OmpT to the degradation and inactivation of LL-37 may be due to their adaptation to their respective niches within the host, the colon and small intestine, respectively, where the environmental cues and abundance of AMPs are different.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Escherichia coli Enterohemorrágica/enzimología , Escherichia coli Enteropatógena/enzimología , Serina Endopeptidasas/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana , Transferencia Resonante de Energía de Fluorescencia , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Pruebas de Sensibilidad Microbiana , Regiones Promotoras Genéticas , Serina Endopeptidasas/genética , Catelicidinas
17.
BMC Microbiol ; 11: 205, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21933418

RESUMEN

BACKGROUND: Type III secretion systems (T3SS) of bacterial pathogens coordinate effector protein injection into eukaryotic cells. The YscU/FlhB group of proteins comprises members associated with T3SS which undergo a specific auto-cleavage event at a conserved NPTH amino acid sequence. The crystal structure of the C-terminal portion of EscU from enteropathogenic Escherichia coli (EPEC) suggests this auto-cleaving protein provides an interface for substrate interactions involved in type III secretion events. RESULTS: We demonstrate EscU must be auto-cleaved for bacteria to efficiently deliver type III effectors into infected cells. A non-cleaving EscU(N262A) variant supported very low levels of in vitro effector secretion. These effector proteins were not able to support EPEC infection of cultured HeLa cells. In contrast, EscU(P263A) was demonstrated to be partially auto-cleaved and moderately restored effector translocation and functionality during EPEC infection, revealing an intermediate phenotype. EscU auto-cleavage was not required for inner membrane association of the T3SS ATPase EscN or the ring forming protein EscJ. In contrast, in the absence of EscU auto-cleavage, inner membrane association of the multicargo type III secretion chaperone CesT was altered suggesting that EscU auto-cleavage supports docking of chaperone-effector complexes at the inner membrane. In support of this interpretation, evidence of novel effector protein breakdown products in secretion assays were linked to the non-cleaved status of EscU(N262A). CONCLUSIONS: These data provide new insight into the role of EscU auto-cleavage in EPEC. The experimental data suggests that EscU auto-cleavage results in a suitable binding interface at the inner membrane that accommodates protein complexes during type III secretion events. The results also demonstrate that altered EPEC genetic backgrounds that display intermediate levels of effector secretion and translocation can be isolated and studied. These genetic backgrounds should be valuable in deciphering sequential and temporal events involved in EPEC type III secretion.


Asunto(s)
Membrana Celular/microbiología , Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Procesamiento Proteico-Postraduccional , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transporte de Proteínas
18.
Gut Microbes ; 2(3): 173-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21804358

RESUMEN

Citrobacter rodentium is a natural pathogen of mice that causes intestinal hyperplasia and colitis. Resistant strains such as C57BL/6J (B6) experience a self-limiting disease that peaks between one and two weeks post infection, followed by a clearing of the infection and complete recovery. However, the inbred mouse strains C3H/HeJ (C3), C3H/HeOuJ (C3Ou) and FVB/N (FVB) are highly susceptible to C. rodentium infection and develop more severe symptoms of disease leading to high rates of mortality during infection. We have recently demonstrated through a systematic genetics approach that a single locus on proximal chromosome 15 is responsible for the susceptibility of both C3 and C3Ou mice to C. rodentium infection. We have named the locus Citrobacter rodentium infection 1 (Cri1). Here we show that Cri1 also controls susceptibility to C. rodentium in FVB mice, using a targeted method of genotyping to stratify (B6 x FVB)F2 mice according to their genotype at Cri1. Mice that inherit two copies of the resistant B6 allele have 97% cumulative survival at day 30 post-infection, whereas those that inherit one or two copies of Cri1 from the FVB parent have significantly lower rates of survival (35% and 42%, respectively). These results provide evidence for a common genetic cause of fatal infectious colitis in C3, C3Ou and FVB mice following infection with Citrobacter rodentium.


Asunto(s)
Citrobacter rodentium/fisiología , Infecciones por Enterobacteriaceae/veterinaria , Predisposición Genética a la Enfermedad , Ratones/genética , Enfermedades de los Roedores/genética , Animales , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/mortalidad , Femenino , Genotipo , Masculino , Ratones/microbiología , Ratones Endogámicos C3H , Ratones Endogámicos , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/mortalidad , Caracteres Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...