Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0304699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995888

RESUMEN

Astaxanthin is a powerful antioxidant known to enhance skin, cardiovascular, eye, and brain health. In this study, the genome insights and astaxanthin production of two newly isolated astaxanthin-producing yeasts (TL35-5 and PL61-2) were evaluated and compared. Based on their phenotypic and genotypic characteristics, TL35-5 and PL61-2 were identified as basidiomycetous yeasts belonging to Rhodotorula paludigena and Rhodotorula sampaioana, respectively. To optimize astaxanthin production, the effects of cultural medium composition and cultivation conditions were examined. The optimal conditions for astaxanthin production in R. paludigena TL35-5 involved cultivation in AP medium containing 10 g/L glucose as the sole carbon source, supplemented with 1.92 g/L potassium nitrate, pH 6.5, and incubation at 20°C for 3 days with shaking at 200 rpm. For R. sampaioana PL61-2, the optimal medium composition for astaxanthin production consisted of AP medium with 40 g/L glucose, supplemented with 0.67 g/L urea, pH 7.5, and the fermentation was carried out at 20°C for 3 days with agitating at 200 rpm. Under their optimal conditions, R. paludigena TL35-5 and R. sampaioana PL61-2 gave the highest astaxanthin yields of 3.689 ± 0.031 and 4.680 ± 0.019 mg/L, respectively. The genome of TL35-5 was 20,982,417 bp in length, with a GC content of 64.20%. A total of 6,789 protein-encoding genes were predicted. Similarly, the genome of PL61-2 was 21,374,169 bp long, with a GC content of 64.88%. It contained 6,802 predicted protein-encoding genes. Furthermore, all essential genes involved in astaxanthin biosynthesis, including CrtE, CrtYB, CrtI, CrtS, and CrtR, were identified in both R. paludigena TL35-5 and R. sampaioana PL61-2, providing evidence for their ability to produce astaxanthin.


Asunto(s)
Rhodotorula , Xantófilas , Xantófilas/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Fermentación , Genómica/métodos , Medios de Cultivo/química , Genoma Fúngico , Filogenia
2.
J Mol Graph Model ; 125: 108597, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37625172

RESUMEN

Four well-suited porous materials for the selective adsorption of the most prominent CFC, which is CCl2F2, from the air are carbon nanotubes CNT (9,9) and CNT (11,11), NaY zeolite, and the Metal Organic Framework MIL-125(Fe). The adsorption has been investigated through molecular simulations. Simulation results and theoretical considerations show that reasons for the extraordinarily high selectivity in all four cases were found to be the differences in the enthalpy of adsorption for the various adsorbed gases rather than steric reasons. The four adsorbate-adsorbent systems have been examined at different temperatures, pressures, and concentration ratios in the mixture. Among them, the carbon nanotube CNT (11,11) exhibited the highest selectivity, reaching up to 104.


Asunto(s)
Nanotubos de Carbono , Zeolitas , Simulación por Computador , Gases , Termodinámica , Adsorción
3.
Heliyon ; 9(7): e18280, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539266

RESUMEN

Astaxanthin is a carotenoid known for its powerful antioxidant properties. This study focused on isolating yeast strains capable of producing astaxanthin from flower and fruit samples collected in Thailand. Out of 115 isolates, 11 strains were identified that produced astaxanthin. Molecular identification techniques revealed that these isolates belonged to two species: Rhodotorula paludigena (5 isolates) and Rhodosporidiobolus ruineniae (6 isolates). Whole-genome analysis of one representative strain, R. paludigena SP9-15, identified putative candidate astaxanthin synthesis-associated genes, such as CrtE, CrtYB, CrtI, CrtS, CrtR, CrtW, CrtO, and CrtZ. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) confirmed astaxanthin production. Further optimization of astaxanthin production was carried out by investigating the effects of various factors on the growth rate and astaxanthin production. The optimal conditions were 40 g/L glucose as a carbon source, pH 7.5, and cultivation at 25 °C with 200 rpm for 3 days. Under these conditions, R. paludigena SP9-15 synthesized biomass of 11.771 ± 0.003 g/L, resulting in astaxanthin with a content of 0.558 ± 0.018 mg/g DCW (dry cell weight), an astaxanthin yield of 6.565 ± 0.238 mg/L, and astaxanthin productivity of 2.188 ± 0.069 g/L/day. These findings provide insights into astaxanthin production using red yeast strains from Thailand and highlight the potential of R. paludigena SP9-15 for further application.

4.
ACS Omega ; 8(30): 27044-27055, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546588

RESUMEN

This work presents the efficient, green, and low-cost preparation of calcium lactate by using bivalve-shell wastes (cockle, mussel, and oyster shells) as raw materials. Three bivalve shells, a cockle, mussel, and oyster, were used separately as an alternative calcium-source material for the preparation of calcium lactate. The bivalve-shell waste was cleaned and milled, obtaining calcium carbonate (CaCO3) powder, which reacted to the lactic acid, forming calcium lactate. The effects of different calcium sources (cockle, mussel, and oyster) and different lactic acid concentrations (6, 8, and 10 mol/L) on the physicochemical properties of the synthesized calcium lactates were then investigated. The results pointed out that the highest solubility of the product was observed when 6 mol/L lactic acid and cockle-shell derived CaCO3 were employed for the calcium lactate preparation. The thermal decompositions of all calcium lactates occurred in three processes: dehydration, ethyl-lactate elimination, and decarbonization, respectively. The results, obtained from an infrared spectrometer, X-ray diffractometer, thermogravimetric analyzer, and scanning electron microscope, confirmed the formation of calcium lactate pentahydrate (Ca(CH3CHOHCOO)2·5H2O). The diffractograms also indicated the presence of two enantiomers of Ca(CH3CHOHCOO)2·5H2O, namely, of dl- and l-enantiomers, which depended on the lactic acid concentration used in the preparation process. The morphologies of calcium lactates show the firewood-like crystals in different microsizes, together with smaller irregular crystals. In summary, this work reports an effective process to prepare the valuable calcium lactates by using the cheap bivalve-shell-derived CaCO3 as a renewable calcium source.

5.
ACS Pharmacol Transl Sci ; 5(9): 774-790, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36110378

RESUMEN

Curcumin is a naturally occurring polyphenol compound with potential analgesic effects. It has been shown to improve pain-like behaviors in numerous models of pain. Despite its potential, curcumin exhibits poor physicochemical and pharmacokinetic properties, which hinder its oral therapeutic efficacy. Curcumin diethyl γ-aminobutyrate (CUR-2GE), a carbamate prodrug of curcumin, was designed to overcome these limitations and demonstrated greater anti-neuroinflammatory effects compared to curcumin in vitro. Thus, this study evaluated the effect of CUR-2GE and its parent compound on pain-like behaviors in carrageenan- and LPS-induced mouse models. The possible side effects of CUR-2GE were also assessed by exploring its effects on motor coordination and spontaneous locomotor activity after acute and chronic treatments. The results showed that CUR-2GE improved mechanical and thermal hyperalgesia and locomotor activity to a greater extent than curcumin in carrageenan-induced mice. These results are in line with the ability of CUR-2GE to suppress peripheral inflammation in the paw tissue of carrageenan-induced mice, indicated by a significant decrease in TNF-α and IL-6 expression levels. Similarly, in LPS-induced mice, CUR-2GE improved sickness and pain-like behaviors (exploratory behaviors and long-term locomotor activity) to a greater extent than curcumin. Furthermore, CUR-2GE significantly reduced the level of proinflammatory cytokines in both the plasma and spinal cord tissue of LPS-induced mice, exhibiting significantly higher inhibition than curcumin. Moreover, the motor coordination, and locomotive behaviors of mice were not affected by both acute and chronic administration of CUR-2GE, indicating no potential CNS side effects. Thus, CUR-2GE demonstrated enhanced therapeutic efficacy in mouse models of inflammatory pain without any possible CNS side effects, suggesting its potential to be developed as an analgesic agent against inflammatory pain.

6.
Sci Rep ; 12(1): 6869, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477985

RESUMEN

The solid-state reaction was employed to synthesize Ca2-xCuxP2O7 by varying the mole ratio between Ca and Cu. The structure and crystallography of the pyrophosphate compounds were identified and confirmed by using X-ray diffraction (XRD). The Rietveld refinement method and the extended X-ray absorption fine structure (EXAFS) least-squares fitting technique were also applied to refine the sample crystal structure. The single phases of the obtained Ca2P2O7, CaCuP2O7, and Cu2P2O7 samples and the mixing phases of the obtained Ca1.5Cu0.5P2O7 and Ca0.5Cu1.5P2O7 samples were identified, and then only a single phase of the samples was subjected to structural and dielectrical analyses. The structural results exhibit the tetragonal crystal system with the P41 space group for ß-Ca2P2O7, the monoclinic crystal system with the P21/c space group for CaCuP2O7, and the C2/c space group for α-Cu2P2O7. The dielectric constant (εr) of the single metal pyrophosphates (Ca2P2O7 and Cu2P2O7) was higher than that of binary metal pyrophosphates (CaCuP2O7). The image sensor result of the Cu2P2O7 sample (x = 2.00) illustrated a yellowish-green color, while other compounds (x = 0.50-1.50) presented color tones that changed from blue-green to bluish-green. Raman and Fourier transform infrared (FTIR) spectrophotometers were employed to characterize and confirm the vibrational characteristics of the P2O74- group, which contains the O-P-O radical ([PO2]-) and the P-O-P bride ([OPO]-) and approximate M-O stretching modes. Furthermore, this work reports for the first time that the change in the crystal structure of Ca2-xCuxP2O7 (i.e., bond angle of P-O-P in P2O74- and distortion phenomena in the M-O6 octahedral site) are cause the correlation between the structure, chromaticity, and dielectric properties of calcium copper pyrophosphates, Ca2-xCuxP2O7.


Asunto(s)
Calcio , Cobre , Pirofosfato de Calcio , Cobre/química , Difosfatos , Difracción de Rayos X
7.
ACS Omega ; 6(27): 17342-17352, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34278120

RESUMEN

The paper shows, by molecular simulations, that a CNT (9,9) carbon nanotube allows very efficient separation of nitrogen oxides (NO x ) from N2, that has in good approximation properties of the complete air mixture. Gibbs ensemble Monte Carlo simulations are used to describe the adsorption. The permanent chemical reaction between N2O4 and NO2, which occurs simultaneously to adsorption, is treated by the reactive Monte Carlo simulation. A very high selectivity has been found. For a low pressure and at T = 298 K, an adsorption/reaction selectivity between NO x and N2 can reach values up to 3 × 103.

8.
J Phys Chem A ; 113(10): 2004-14, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19206222

RESUMEN

The permeation of methane molecules through the silicalite-1 surfaces with and without silanol groups has been studied by nonequilibrium molecular dynamics computer simulations. A newly fitted intermolecular potential between the methane molecules and the silanol is used. A control volume provides a nearly stationary gas phase close to the membrane. The nonequilibrium process of filling the (initially empty) membrane with methane molecules until saturation is considered, and the surface permeability has been evaluated. It turns out to be strongly influenced by the presence of silanol groups. Additionally it was found that for a large part of the loading process the particle stream into the zeolite membrane was nearly independent upon the deviation from equilibrium. This means that far from equilibrium the decay of this deviation does not follow an exponential law.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...