Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 10(462)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305456

RESUMEN

Tissue injury and inflammation markedly alter touch perception, making normally innocuous sensations become intensely painful. Although this sensory distortion, known as tactile allodynia, is one of the most common types of pain, the mechanism by which gentle mechanical stimulation becomes unpleasant remains enigmatic. The stretch-gated ion channel PIEZO2 has been shown to mediate light touch, vibration detection, and proprioception. However, the role of this ion channel in nociception and pain has not been resolved. Here, we examined the importance of Piezo2 in the cellular representation of mechanosensation using in vivo imaging in mice. Piezo2-knockout neurons were completely insensitive to gentle dynamic touch but still responded robustly to noxious pinch. During inflammation and after injury, Piezo2 remained essential for detection of gentle mechanical stimuli. We hypothesized that loss of PIEZO2 might eliminate tactile allodynia in humans. Our results show that individuals with loss-of-function mutations in PIEZO2 completely failed to develop sensitization and painful reactions to touch after skin inflammation. These findings provide insight into the basis for tactile allodynia, identify the PIEZO2 mechanoreceptor as an essential mediator of touch under inflammatory conditions, and suggest that this ion channel might be targeted for treating tactile allodynia.


Asunto(s)
Canales Iónicos/metabolismo , Dolor/metabolismo , Tacto , Animales , Capsaicina/farmacología , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Hiperalgesia/patología , Imagenología Tridimensional , Inflamación/complicaciones , Inflamación/patología , Canales Iónicos/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Neuronas/metabolismo , Dolor/complicaciones , Dolor/genética , Recombinación Genética/genética
2.
Elife ; 72018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968565

RESUMEN

Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.


Asunto(s)
Gliosis/genética , Hiperalgesia/genética , Quinasas Quinasa Quinasa PAM/genética , Neuralgia/genética , Traumatismos de los Nervios Periféricos/genética , Células Receptoras Sensoriales/enzimología , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Gliosis/enzimología , Gliosis/patología , Gliosis/prevención & control , Hiperalgesia/enzimología , Hiperalgesia/patología , Hiperalgesia/prevención & control , Quinasas Quinasa Quinasa PAM/deficiencia , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microglía/enzimología , Microglía/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/enzimología , Neuralgia/patología , Neuralgia/prevención & control , Traumatismos de los Nervios Periféricos/enzimología , Traumatismos de los Nervios Periféricos/patología , Nervio Ciático/enzimología , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Células Receptoras Sensoriales/patología , Transducción de Señal , Médula Espinal/enzimología , Médula Espinal/patología , Tacto , Transcripción Genética
3.
Neuron ; 95(4): 944-954.e4, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817806

RESUMEN

The somatosensory system provides animals with the ability to detect, distinguish, and respond to diverse thermal, mechanical, and irritating stimuli. While there has been progress in defining classes of neurons underlying temperature sensation and gentle touch, less is known about the neurons specific for mechanical pain. Here, we use in vivo functional imaging to identify a class of cutaneous sensory neurons that are selectively activated by high-threshold mechanical stimulation (HTMRs). We show that their optogenetic excitation evokes rapid protective and avoidance behaviors. Unlike other nociceptors, these HTMRs are fast-conducting Aδ-fibers with highly specialized circumferential endings wrapping the base of individual hair follicles. Notably, we find that Aδ-HTMRs innervate unique but overlapping fields and can be activated by stimuli as precise as the pulling of a single hair. Together, the distinctive features of this class of Aδ-HTMRs appear optimized for accurate and rapid localization of mechanical pain. VIDEO ABSTRACT.


Asunto(s)
Vías Aferentes/fisiología , Cabello , Mecanorreceptores/fisiología , Nociceptores/fisiología , Células Receptoras Sensoriales/fisiología , Tacto/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Antineoplásicos Hormonales/farmacología , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Channelrhodopsins , Diterpenos/farmacología , Femenino , Cabello/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotoxinas/farmacología , Piel/inervación , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Tamoxifeno/farmacología , Ganglio del Trigémino/diagnóstico por imagen , Ganglio del Trigémino/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...