Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173114

RESUMEN

The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and ß-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and ß-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.

2.
Int J Hyg Environ Health ; 261: 114418, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968838

RESUMEN

BACKGROUND: There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE: To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS: Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS: Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS: Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.


Asunto(s)
Contaminantes Ambientales , Fenoles , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Pubertad , Humanos , Ácidos Ftálicos/orina , Femenino , Masculino , Fenoles/orina , Embarazo , Niño , Contaminantes Ambientales/orina , Pubertad/efectos de los fármacos , Estudios de Cohortes , Europa (Continente) , Compuestos de Bencidrilo/orina , Parabenos
3.
Sci Total Environ ; 947: 174550, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004364

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous contaminants which are also found in drinking water. Concentration levels in drinking water vary widely and range from a very low contribution to total daily exposure for humans to being the major source of uptake of PFAS. PFAS concentrations in Norwegian drinking water has been rarely reported. We investigated concentrations of 31 PFAS in 164 water samples, representing both source water (i.e., before drinking water treatment) and finished drinking water. Samples were taken from 18 different water bodies across Norway. The 17 waterworks involved supply drinking water to 41 % of the Norwegian population. Only four of the waterworks utilised treatment involving activated carbon which was able to significantly reduce PFAS from the source water. Samples of source water from waterworks not employing activated carbon in treatment were therefore considered to represent drinking water with regards to PFAS (142 samples). All samples from one of the water bodies exceeded the environmental quality standard (EQS) for perfluorooctane sulfonic acid (PFOS) according to the water framework directive (0.65 ng/L). No concentrations exceeded the sum of (20) PFAS (100 ng/L) specified in the EU directive 2020/2184 for drinking water. Several EU countries have issued lower guidelines for the sum of the four PFAS that the European Food Safety Authority (EFSA) has established as the tolerable weekly intake (TWI) for PFOS, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS). Denmark and Sweden have guidelines specifying 2 and 4 ng/L for the sum of these PFAS. Only one of the 142 drinking water samples exceeded the Danish TWI and contained a sum of 6.6 ng/L PFAS. A population exposure model, for individuals drinking water from the investigated sources, showed that only 0.5 % of the population was receiving PFAS concentrations above the Danish limit of 2 ng/L.


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Fluorocarburos , Contaminantes Químicos del Agua , Noruega , Agua Potable/química , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/análisis , Humanos
4.
Environ Int ; 190: 108845, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38945087

RESUMEN

INTRODUCTION: Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE: In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS: The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS: We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION: Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.

5.
Environ Int ; 189: 108763, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824843

RESUMEN

BACKGROUND: Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS: The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS: In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS: By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.


Asunto(s)
Metilación de ADN , Disruptores Endocrinos , Epigénesis Genética , Exposición Materna , Fenoles , Ácidos Ftálicos , Placenta , Humanos , Metilación de ADN/efectos de los fármacos , Femenino , Embarazo , Placenta/metabolismo , Placenta/efectos de los fármacos , Adulto , Masculino , Islas de CpG , Contaminantes Ambientales
6.
Hum Reprod Open ; 2024(2): hoae018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689737

RESUMEN

STUDY QUESTION: Is exposure to environmental chemicals associated with modifications of placental morphology and function? SUMMARY ANSWER: Phthalates, a class of ubiquitous chemicals, showed an association with altered placental weight, placental vascular resistance (PVR), and placental efficiency. WHAT IS KNOWN ALREADY: Only a few epidemiological studies have assessed the effects of phenols and phthalates on placental health. Their results were affected by exposure measurement errors linked to the rapid excretion of these compounds and the reliance on a limited number of spot urine samples to assess exposure. STUDY DESIGN SIZE DURATION: A prospective mother-child cohort, with improved exposure assessment for non-persistent chemicals, recruited participants between 2014 and 2017. Sample size ranged between 355 (placental parameters measured at birth: placental weight and placental-to-fetal weight ratio (PFR): a proxy for placental efficiency) and 426 (placental parameters measured during pregnancy: placental thickness and vascular resistance). PARTICIPANTS/MATERIALS SETTING METHODS: Phenols (four parabens, two bisphenols, triclosan, and benzophenone-3), 13 phthalate metabolites, and two non-phthalate plasticizer metabolites were measured in within-subject pools of repeated urine samples collected during the second and third trimesters of pregnancy (median = 21 samples/trimester/woman). Placental thickness and PVR were measured during pregnancy. The placenta was weighed at birth and the PFR was computed. Both adjusted linear regression and Bayesian Kernel Machine Regression were used to evaluate associations between phenols and phthalates (alone or as a mixture) and placental parameters. Effect modification by child sex was also investigated. MAIN RESULTS AND THE ROLE OF CHANCE: Several phthalate metabolites were negatively associated with placental outcomes. Monobenzyl phthalate (MBzP) concentrations, during the second and third trimesters of pregnancy, were associated with a decrease in both placental weight at birth (ß = -20.1 g [95% CI: -37.8; -2.5] and ß = -17.4 g [95% CI: -33.2; -1.6], for second and third trimester, respectively) and PFR (ß = -0.5 [95% CI: -1, -0.1] and ß = -0.5 [95% CI: -0.9, -0.1], for the second and third trimester, respectively). Additionally, MBzP was negatively associated with PVR during the third trimester (ß= -0.9 [95% CI: -1.8; 0.1]). Mono-n-butyl phthalate (MnBP), was negatively associated with PVR in both trimesters (ß = -1.3, 95% CI: [-2.3, -0.2], and ß = -1.2, 95% CI: [-2.4, -0.03], for the second and third trimester, respectively). After stratification for child sex, Σ diisononyl phthalate (DiNP) (either second or third-trimester exposures, depending on the outcomes considered) was associated with decreased PVR in the third trimester, as well as decreased placental weight and PFR in males. No associations were observed for phenol biomarkers. LIMITATIONS REASONS FOR CAUTION: False positives cannot be ruled out. Therefore, chemicals that were associated with multiple outcomes (MnBP and DiNP) or reported in existing literature as associated with placental outcomes (MBzP) should be considered as the main results. WIDER IMPLICATIONS OF THE FINDINGS: Our results are consistent with in vitro studies showing that phthalates target peroxisome proliferator-activated receptor γ, in the family of nuclear receptors involved in key placental development processes such as trophoblast proliferation, migration, and invasion. In addition to placental weight at birth, we studied placental parameters during pregnancy, which could provide a broader view of how environmental chemicals affect maternal-fetal exchanges over the course of pregnancy. Our findings contribute to the increasing evidence indicating adverse impacts of phthalate exposure on placental health. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the French Research Agency-ANR (MEMORI project ANR-21-CE34-0022). The SEPAGES cohort was supported by the European Research Council (N°311765-E-DOHaD), the European Community's Seventh Framework Programme (FP7/2007-206-N°308333-892 HELIX), the European Union's Horizon 2020 research and innovation programme (N° 874583 ATHLETE Project, N°825712 OBERON Project), the French Research Agency-ANR (PAPER project ANR-12-PDOC-0029-01, SHALCOH project ANR-14-CE21-0007, ANR-15-IDEX-02 and ANR-15-IDEX5, GUMME project ANR-18-CE36-005, ETAPE project ANR-18-CE36-0005-EDeN project ANR-19-CE36-0003-01), the French Agency for Food, Environmental and Occupational Health & Safety-ANSES (CNAP project EST-2016-121, PENDORE project EST-2016-121, HyPAxE project EST-2019/1/039, PENDALIRE project EST-2022-169), the Plan Cancer (Canc'Air project), the French Cancer Research Foundation Association de Recherche sur le Cancer-ARC, the French Endowment Fund AGIR for chronic diseases-APMC (projects PRENAPAR, LCI-FOT, DysCard), the French Endowment Fund for Respiratory Health, the French Fund-Fondation de France (CLIMATHES-00081169, SEPAGES 5-00099903, ELEMENTUM-00124527). N.J. was supported by a doctoral fellowship from the University Grenoble Alpes. V.M. was supported by a Sara Borrell postdoctoral research contract (CD22/00176), granted by Instituto de Salud Carlos III (Spain) and NextGenerationEU funds. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT02852499.

7.
Environ Health Perspect ; 132(5): 57002, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728218

RESUMEN

BACKGROUND: Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES: We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS: We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS: The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS: This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.


Asunto(s)
Disruptores Endocrinos , Parabenos , Fenoles , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Humanos , Ácidos Ftálicos/orina , Fenoles/orina , Fenoles/toxicidad , Femenino , Lactante , Embarazo , Disruptores Endocrinos/orina , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/orina , Masculino , Exposición Materna/estadística & datos numéricos , Exposición Materna/efectos adversos , Estudios Longitudinales , Preescolar , Antropometría
8.
Sci Total Environ ; 932: 173014, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729362

RESUMEN

BACKGROUND: Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS: Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS: We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 µg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION: We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.


Asunto(s)
ADN Mitocondrial , Mercurio , Telómero , Humanos , Niño , Mercurio/sangre , Femenino , Masculino , Europa (Continente) , Exposición a Riesgos Ambientales , Compuestos de Metilmercurio , Estrés Oxidativo
9.
Environ Int ; 186: 108621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593693

RESUMEN

In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.


Asunto(s)
Ácidos Alcanesulfónicos , Lactancia Materna , Caprilatos , Contaminantes Ambientales , Fluorocarburos , Exposición Materna , Humanos , Fluorocarburos/sangre , Ácidos Alcanesulfónicos/sangre , Femenino , Caprilatos/sangre , Embarazo , Niño , Preescolar , Lactante , Contaminantes Ambientales/sangre , Exposición Materna/estadística & datos numéricos , Recién Nacido , Masculino , Exposición a Riesgos Ambientales/análisis , Dieta , Efectos Tardíos de la Exposición Prenatal , Adulto
10.
Environ Int ; 186: 108584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513557

RESUMEN

BACKGROUND: Most previous studies investigating the associations between prenatal exposure to phthalates and fetal growth relied on measurements of phthalate metabolites at a single time point. They also focused on weight at birth without assessing growth over pregnancy, preventing the identification of potential periods of fetal vulnerability. We examined the associations between pregnancy urinary phthalate metabolites and fetal growth outcomes measured twice during pregnancy and at birth. METHODS: For 484 pregnant women, we assessed 13 phthalate and two 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) metabolite concentrations from two within-subject weekly pools of up to 21 urine samples (median of 18 and 34 gestational weeks, respectively). Fetal biparietal diameter, femur length, head and abdominal circumferences were measured during two routine pregnancy follow-up ultrasonographies (median 22 and 32 gestational weeks, respectively) and estimated fetal weight (EFW) was calculated. Newborn weight, length, and head circumference were measured at birth. Associations between phthalate/DINCH metabolite and growth parameters were investigated using adjusted linear regression and Bayesian kernel machine regression models. RESULTS: Detection rates were above 99 % for all phthalate/DINCH metabolites. While no association was observed with birth measurements, mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) were positively associated with most fetal growth parameters measured at the second trimester. Specifically, MiBP was positively associated with biparietal diameter, head and abdominal circumferences, while MnBP was positively associated with EFW, head and abdominal circumferences, with stronger associations among males. Pregnancy MnBP was positively associated with biparietal diameter and femur length at third trimester. Mixture of phthalate/DINCH metabolites was positively associated with EFW at second trimester. CONCLUSIONS: In this pregnancy cohort using repeated urine samples to assess exposure, MiBP and MnBP were associated with increased fetal growth parameters. Further investigation on the effects of phthalates on child health would be relevant for expanding current knowledge on their long-term effects.


Asunto(s)
Desarrollo Fetal , Exposición Materna , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/orina , Femenino , Embarazo , Desarrollo Fetal/efectos de los fármacos , Adulto , Estudios de Cohortes , Contaminantes Ambientales/orina , Masculino , Recién Nacido , Adulto Joven , Peso al Nacer/efectos de los fármacos
11.
Environ Int ; 185: 108490, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364572

RESUMEN

Chemical exposures often occur in mixtures and exposures during pregnancy may lead to adverse effects on the fetal brain, potentially reducing lower cognitive abilities and fine motor function of the child. We investigated the association of mothers exposure to a mixture of chemicals during pregnancy (i.e., organochlorine compounds, per- and polyfluoroalkyl substances, phenols, phthalates, organophosphate pesticides) with cognitive abilties and fine motor function in their children. We studied 1097 mother-child pairs from five European cohorts participating in the Human Early Life Exposome study (HELIX). Measurement of 26 biomarkers of exposure to chemicals was performed on urine or blood samples of pregnant women (mean age 31 years). Cognitive abilities and fine motor function were assessed in their children (mean age 8 years) with a battery of computerized tests administered in person (Ravens Coloured Progressive Matrices, Attention Network Test, N-back Test, Trail Making Test, Finger Tapping Test). We estimated the joint effect of prenatal exposure to chemicals on cognitive abilities and fine motor function using the quantile-based g-computation method, adjusting for sociodemographic characteristics. A quartile increase in all the chemicals in the overall mixture was associated with worse fine motor function, specifically lower scores in the Finger Tapping Test [-8.5 points, 95 % confidence interval (CI) -13.6 to -3.4; -14.5 points, 95 % CI -22.4 to -6.6, and -18.0 points, 95 % CI -28.6 to -7.4) for the second, third and fourth quartile of the overal mixture, respectively, when compared to the first quartile]. Organochlorine compounds, phthalates, and per- and polyfluoroalkyl substances contributed most to this association. We did not find a relationship with cognitive abilities. We conclude that exposure to chemical mixtures during pregnancy may influence neurodevelopment, impacting fine motor function of the offspring.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Hidrocarburos Clorados , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Adulto , Niño , Exposición Materna/efectos adversos , Cognición , Contaminantes Ambientales/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...