Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 96(6): e29690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38804180

RESUMEN

Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.


Asunto(s)
Autofagia , Herpesvirus Humano 3 , Neuronas , Humanos , Herpesvirus Humano 3/fisiología , Herpesvirus Humano 3/patogenicidad , Neuronas/virología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Replicación Viral , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Infección por el Virus de la Varicela-Zóster/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Interacciones Huésped-Patógeno
2.
J Clin Immunol ; 44(2): 56, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277122

RESUMEN

Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus exclusively infecting humans, causing two distinct pathologies: varicella (chickenpox) upon primary infection and herpes zoster (shingles) following reactivation. In susceptible individuals, VZV can give rise to more severe clinical manifestations, including disseminated infection, pneumonitis, encephalitis, and vasculopathy with stroke. Here, we describe a 3-year-old boy in whom varicella followed a complicated course with thrombocytopenia, hemorrhagic and necrotic lesions, pneumonitis, and intermittent encephalopathy. Hemophagocytic lymphohistiocytosis (HLH) was strongly suspected and as the condition deteriorated, HLH therapy was initiated. Although the clinical condition improved, longstanding hemophagocytosis followed despite therapy. We found that the patient carries a rare monoallelic variant in autocrine motility factor receptor (AMFR), encoding a ubiquitin ligase involved in innate cytosolic DNA sensing and interferon (IFN) production through the cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway. Peripheral blood mononuclear cells (PBMCs) from the patient exhibited impaired signaling downstream of STING in response dsDNA and 2'3'-cGAMP, agonists of cGAS and STING, respectively, and fibroblasts from the patient showed impaired type I IFN responses and significantly increased VZV replication. Overexpression of the variant AMFR R594C resulted in decreased K27-linked STING ubiquitination compared to WT AMFR. Moreover, ImageStream technology revealed reduced STING trafficking from ER to Golgi in cells expressing the patient AMFR R594C variant. This was supported by a dose-dependent dominant negative effect of expression of the patient AMFR variant as measured by IFN-ß reporter gene assay. Finally, lentiviral transduction with WT AMFR partially reconstituted 2'3'-cGAMP-induced STING-mediated signaling and ISG expression in patient PBMCs. This work links defective AMFR-STING signaling to severe VZV disease and hyperinflammation and suggests a direct role for cGAS-STING in the control of viral infections in humans. In conclusion, we describe a novel genetic etiology of severe VZV disease in childhood, also representing the first inborn error of immunity related to a defect in the cGAS-STING pathway.


Asunto(s)
Varicela , Herpes Zóster , Interferón Tipo I , Linfohistiocitosis Hemofagocítica , Neumonía , Preescolar , Humanos , Herpesvirus Humano 3/genética , Inmunidad Innata , Leucocitos Mononucleares/metabolismo , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Receptores del Factor Autocrino de Motilidad , Ubiquitina-Proteína Ligasas/genética , Masculino
3.
Front Mol Neurosci ; 16: 1253040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025266

RESUMEN

Purpose: Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods: We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results: We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion: We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.

4.
J Infect Dis ; 225(1): 157-162, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34037797

RESUMEN

The present study describes a 19-year-old woman with systemic herpes simplex virus (HSV)-1 infection and hemophagocytic lymphohistiocytosis (HLH) postpartum, and a fatal course of neonatal herpesvirus infection. Functional investigation of cells from the mother demonstrated significantly impaired induction of antiviral interferons and cytokines in the context of normal activation of the transcription factors NF-κB and IRF3. Whole-exome sequencing did not reveal any functionally validated genetic variants. We suggest that the functionally impaired antiviral responses, potentially caused by a variant in CASP8 or other variants in noncoding regions of the genome, contributed to the unusually severe disease course observed in two generations.


Asunto(s)
Herpes Simple/diagnóstico , Herpesvirus Humano 1/aislamiento & purificación , Linfohistiocitosis Hemofagocítica/complicaciones , Antivirales/uso terapéutico , Enfermedades Transmisibles/tratamiento farmacológico , Citocinas , Femenino , Herpes Simple/complicaciones , Herpes Simple/tratamiento farmacológico , Herpes Simple/mortalidad , Herpesvirus Humano 1/genética , Humanos , Inmunidad Innata , Transmisión Vertical de Enfermedad Infecciosa , Interferones/uso terapéutico , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Periodo Posparto , Complicaciones Infecciosas del Embarazo , Secuenciación del Exoma , Adulto Joven
5.
J Infect Dis ; 224(12): 2122-2132, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33974706

RESUMEN

BACKGROUND: Infection with varicella zoster virus (VZV) may involve different central nervous system (CNS) manifestations, including meningitis, encephalitis, and vasculitis. In cases in which otherwise healthy individuals are affected, an inborn error of immunity may underlie increased susceptibility or severity of infection. METHODS: We collected a cohort of 17 adults who experienced VZV encephalitis and performed whole exome sequencing. Patient peripheral blood mononuclear cells were infected with VZV, and innate antiviral interferon (IFN) and cytokine responses as well as viral replication were evaluated. Data were analyzed by Mann-Whitney U test. RESULTS: We identified a total of 21 different potentially disease-causing variants in a total of 13 of the 17 patients included. These gene variants were within 2 major functional clusters: (1) innate viral sensors and immune pathways and (2) autophagy pathways. Antiviral IFN and cytokine responses were abnormal in the majority of patients, whereas viral replication was increased in only 2 of 17 patients. CONCLUSIONS: This study identifies a list of variants of pathogenic potential, which may serve as a platform for generating hypotheses for future studies addressing genetic and immunological factors associated with susceptibility to VZV encephalitis. These data, taken together, suggest that disturbances in innate sensing and autophagy pathways may predispose to VZV encephalitis.


Asunto(s)
Citocinas , Encefalitis por Varicela Zóster/diagnóstico , Herpesvirus Humano 3/genética , Inmunidad Innata , Adulto , Anciano , Antivirales/uso terapéutico , Autofagia , Preescolar , Citocinas/inmunología , Encefalitis por Varicela Zóster/genética , Encefalitis por Varicela Zóster/inmunología , Variación Genética , Herpes Zóster , Humanos , Leucocitos Mononucleares , Persona de Mediana Edad , Secuenciación del Exoma
6.
EBioMedicine ; 64: 103230, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33530000

RESUMEN

BACKGROUND: Upon SARS-CoV-2 infection, most individuals develop neutralizing antibodies and T-cell immunity. However, some individuals reportedly remain SARS-CoV-2 PCR positive by pharyngeal swabs weeks after recovery. Whether viral RNA in these persistent carriers is contagious and stimulates SARS-CoV-2-specific immune responses is unknown. METHODS: This cohort study was conducted between April 3rd-July 9th 2020, recruiting COVID-19 recovered individuals that were symptom-free for at least 14 days. We collected serum for SARS-CoV-2-specific total Ig, IgA and IgM detection by ELISA, pharyngeal swabs (two time points) for ddPCR and PBMCs for anti-SARS-CoV-2 CD8 T-cell dextramer analyses. FINDINGS: We enrolled 203 post-symptomatic participants with a previous RT-PCR-verified SARS-CoV-2 infection. At time point 1, a median of 23 days (range 15-44) after recovery, 26 individuals (12⋅8%) were PCR positive. At time point 2, 90 days (median, range 85-105) after recovery, 5 (5⋅3%) were positive. There was no difference in SARS-CoV-2 antibody levels between the PCR negative and positive group. The persistent PCR positive group however, had SARS-CoV-2-specific CD8 T-cell responses of significantly increased breadth and magnitude. Assisted contact tracing among persistent PCR positive individuals revealed zero new COVID-19 diagnoses among 757 close contacts. INTERPRETATION: Persistent pharyngeal SARS-CoV-2 PCR positivity in post-symptomatic individuals is associated with elevated cellular immune responses and thus, the viral RNA may represent replicating virus. However, transmission to close contacts was not observed indicating that persistent PCR positive individuals are not contagious at the post-symptomatic stage of the infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Prueba de Ácido Nucleico para COVID-19 , COVID-19/inmunología , ARN Viral/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/metabolismo , COVID-19/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Viral/sangre , SARS-CoV-2/metabolismo
7.
J Infect Dis ; 223(10): 1776-1786, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32946550

RESUMEN

Recurrent lymphocytic meningitis, also referred to as Mollaret meningitis, is a rare neurological disease characterized mainly by reactivation of herpes simplex virus 2 (HSV-2) from sensory ganglia. However, the underlying host immune determinants and viral factors rendering some individuals unable to maintain HSV-2 latency are largely unknown. We collected a cohort of 15 patients diagnosed with Mollaret meningitis. By whole-exome sequencing we identified rare host genetic variants predicted to be deleterious in molecules involved in (1) ubiquitin-proteasome pathways, (2) the autophagy machinery, and (3) cell proliferation/apoptosis. Moreover, infection of patient cells with HSV-2 or stimulation by virus-derived double-stranded DNA ligands revealed reduced antiviral interferon responses in most patients. These findings may contribute to a better understanding of disease pathogenesis and protective immunity to HSV in the central nervous system, and may ultimately be of importance for identification of targets for development of improved prophylaxis and treatment of this disease.


Asunto(s)
Secuenciación del Exoma , Herpes Simple , Meningitis , Herpes Simple/genética , Herpesvirus Humano 2 , Humanos , Interferones , Linfocitos , Meningitis/genética , Meningitis/virología , Recurrencia
8.
Autophagy ; 17(9): 2449-2464, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33016799

RESUMEN

Paralytic poliomyelitis is a rare disease manifestation following poliovirus (PV) infection. The disease determinants remain largely unknown. We used whole exome sequencing to uncover possible contributions of host genetics to the development of disease outcome in humans with poliomyelitis. We identified a patient with a variant in ATG7, an important regulatory gene in the macroautophagy/autophagy pathway. PV infection did not induce a prominent type I interferon response, but rather activated autophagy in neuronal-like cells, and this was essential for viral control. Importantly, virus-induced autophagy was impaired in patient fibroblasts and associated with increased viral burden and enhanced cell death following infection. Lack of ATG7 prevented control of infection in neuronal-like cells, and reconstitution of patient cells with wild-type ATG7 reestablished autophagy-mediated control of infection. Collectively, these data suggest that ATG7 defect contributes to host susceptibility to PV infection and propose autophagy as an unappreciated antiviral effector in viral infection in humans.


Asunto(s)
Interferón Tipo I , Poliomielitis , Poliovirus , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Humanos , Neuronas , Poliomielitis/genética , Poliomielitis/prevención & control , Poliovirus/genética
9.
Sci Immunol ; 5(54)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33310865

RESUMEN

Recurrent herpesvirus infections can manifest in different forms of disease, including cold sores, genital herpes, and encephalitis. There is an incomplete understanding of the genetic and immunological factors conferring susceptibility to recurrent herpes simplex virus 2 (HSV2) infection in the central nervous system (CNS). Here, we describe two adult patients with recurrent HSV2 lymphocytic Mollaret's meningitis that each carry a rare monoallelic variant in the autophagy proteins ATG4A or LC3B2. HSV2-activated autophagy was abrogated in patient primary fibroblasts, which also exhibited significantly increased viral replication and enhanced cell death. HSV2 antigen was captured in autophagosomes of infected cells, and genetic inhibition of autophagy by disruption of autophagy genes, including ATG4A and LC3B2, led to enhanced viral replication and cell death in primary fibroblasts and a neuroblastoma cell line. Activation of autophagy by HSV2 was sensitive to ultraviolet (UV) irradiation of the virus and inhibited in the presence of acyclovir, but HSV2-induced autophagy was independent of the DNA-activated STING pathway. Reconstitution of wild-type ATG4A and LC3B2 expression using lentiviral gene delivery or electroporation of in vitro transcribed mRNA into patient cells restored virus-induced autophagy and the ability to control HSV2 replication. This study describes a previously unknown link between defective autophagy and an inborn error of immunity that can lead to increased susceptibility to HSV2 infection, suggesting an important role for autophagy in antiviral immunity in the CNS.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Autofagia , Cisteína Endopeptidasas/genética , Resistencia a la Enfermedad , Herpesvirus Humano 2/inmunología , Meningitis Viral/etiología , Proteínas Asociadas a Microtúbulos/genética , Mutación , Anciano , Autofagia/genética , Autofagia/inmunología , Células Cultivadas , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades , Femenino , Fibroblastos , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Proteínas de la Membrana/metabolismo , Meningitis Viral/diagnóstico , Persona de Mediana Edad , Recurrencia , Transducción de Señal , Carga Viral , Replicación Viral
10.
Nat Commun ; 11(1): 4938, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009401

RESUMEN

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Dimetilfumarato/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Neumonía Viral/tratamiento farmacológico , Succinatos/agonistas , Adulto , Antioxidantes/farmacología , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Dimetilfumarato/farmacología , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interferón Tipo I , Pulmón/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Succinatos/farmacología , Replicación Viral/efectos de los fármacos
12.
J Geophys Res Space Phys ; 125(3)2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32874821

RESUMEN

At Jupiter, tail reconnection is thought to be driven by an internal mass loading and release process called the Vasyliunas cycle. Galileo data have shown hundreds of reconnection events occurring in Jupiter's magnetotail. Here we present a survey of reconnection events observed by Juno during its first 16 orbits of Jupiter (July 2016-October 2018). The events are identified using Juno magnetic field data, which facilitates comparison to the Vogt et al. (2010, https://doi.org/10.1029/2009JA015098) survey of reconnection events from Galileo magnetometer data, but we present data from Juno's other particle and fields instruments for context. We searched for field dipolarizations or reversals and found 232 reconnection events in the Juno data, most of which featured an increase in |B θ |, the magnetic field meridional component, by a factor of 3 over background values. We found that most properties of the Juno reconnection events, like their spatial distribution and duration, are comparable to Galileo, including the presence of a ~3-day quasi-periodicity in the recurrence of Juno tail reconnection events and in Juno JEDI, JADE, and Waves data. However, unlike with Galileo we were unable to clearly define a statistical x-line separating planetward and tailward Juno events. A preliminary analysis of plasma velocities during five magnetic field reconnection events showed that the events were accompanied by fast radial flows, confirming our interpretation of these magnetic signatures as reconnection events. We anticipate that a future survey covering other Juno datasets will provide additional insight into the nature of tail reconnection at Jupiter.

13.
Front Immunol ; 11: 1606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695122

RESUMEN

Coronavirus disease-19 (COVID-19) describes a set of symptoms that develop following infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whilst COVID-19 disease is most serious in patients with significant co-morbidities, the reason for healthy individuals succumbing to fulminant infection is largely unexplained. In this review, we discuss the most recent findings in terms of clinical features and the host immune response, and suggest candidate immune pathways that may be compromised in otherwise healthy individuals with fulminating COVID-19. On the basis of this early knowledge we reason a potential genetic effect on host immune response pathways leading to increased susceptibility to SARS-CoV-2 infection. Understanding these pathways may help not only in unraveling disease pathogenesis, but also in suggesting targets for therapy and prophylaxis. Importantly such insight should instruct efforts to identify those at increased risk in order to institute preventative measures, such as prophylactic medication and/or vaccination, when such opportunities arise in the later phases of the current pandemic or during future similar pandemics.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Predisposición Genética a la Enfermedad , Pandemias , Neumonía Viral , Betacoronavirus/genética , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/genética , Neumonía Viral/inmunología , SARS-CoV-2 , Índice de Severidad de la Enfermedad
14.
Med Microbiol Immunol ; 208(6): 869-876, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31172279

RESUMEN

Influenza infection is common worldwide with many individuals affected each year during epidemics and occasionally pandemics. Previous studies in animal models and a few human cases have established an important role of innate type I and III interferon (IFN) for viral elimination and mounting of antiviral responses. However, genetic and immunological determinants of very severe disseminated influenza virus infection in humans remain incompletely understood. Here, we describe an adult patient with severe influenza virus A (IAV) infection, in whom we identified a rare variant E331V in IFN regulatory factor (IRF)7 by whole-exome sequencing. Examination of patient cells demonstrated a cellular phenotype suggesting functional IRF7 impairment, since priming with IFN was almost abolished and IFN responses to IAV were significantly impaired in patient cells. Moreover, IAV replication was significantly higher in patient cells than in controls. Finally, expression of IRF7 E331V in HEK293 cells demonstrated significantly reduced activation of both IFNA7 and IFNB promoters in a luciferase reporter gene expression assay compared to IRF7 wild type. These findings provide further support for the essential role of IRF7 in amplifying antiviral IFN responses to ensure potent and sustained IFN responses during influenza virus infection in humans.


Asunto(s)
Inmunidad Innata , Factores Inmunológicos/metabolismo , Gripe Humana/inmunología , Gripe Humana/patología , Factor 7 Regulador del Interferón/genética , Interferones/metabolismo , Mutación Missense , Adulto , Células HEK293 , Humanos , Factor 7 Regulador del Interferón/metabolismo , Interferón-alfa/biosíntesis , Masculino , Persona de Mediana Edad , Orthomyxoviridae/crecimiento & desarrollo , Replicación Viral , Secuenciación Completa del Genoma
16.
J Geophys Res Space Phys ; 122(9): 9207-9227, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29214118

RESUMEN

The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1-30 keV are presented for 2 ≤ L ≤ 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activity. We present a new tool built on the UBK modeling technique for classifying plasma sheet particle access to the inner magnetosphere. This new tool generates access maps for particles of constant energy for more direct comparison with in situ measurements, rather than the traditional constant µ presentation typically associated with UBK. We present for the first time inner magnetosphere abundances of O+ flux relative to H+ flux as a function of Kp, L, MLT, and energy. At L = 6, the O+/H+ ratio increases with increasing Kp, consistent with previous results. However, at L < 5 the O+/H+ ratio generally decreases with increasing Kp. We identify a new "afternoon bulge" plasma population enriched in 10 keV O+ and superenriched in 10 keV He+ that is present during quiet/moderate geomagnetic activity (Kp < 5) at ~1100-2000 MLT and L shell 2-4. Drift path modeling results are consistent with the narrow energy and approximate MLT location of this enhancement, but the underlying physics describing its formation, structure, and depletion during higher geomagnetic activity are currently not understood.

17.
Space Weather ; 14(2): 151-164, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27398076

RESUMEN

Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV. It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. We also show noneclipse significant negative charging events on the Van Allen Probes.

18.
Proteomics ; 16(7): 1166-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26867521

RESUMEN

Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency and redox active proteins, as reflected by downregulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through upregulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins, indicating novel link between ETHE1 and gene expression regulation. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide. All MS data have been deposited in the ProteomeXchange with the dataset identifiers PXD002741 (http://proteomecentral.proteomexchange.org/dataset/PXD002741) and PXD002742 (http://proteomecentral.proteomexchange.org/dataset/PXD002741).


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Dioxigenasas/deficiencia , Dioxigenasas/genética , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Púrpura/metabolismo , Acetilación , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Proteoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...