Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 5891, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003263

RESUMEN

Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.


Asunto(s)
Diferenciación Celular , Receptores Notch , Transducción de Señal , Ingeniería de Tejidos , Receptores Notch/metabolismo , Ingeniería de Tejidos/métodos , Animales , Humanos , Ratones , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Ligandos , Andamios del Tejido/química , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Células Endoteliales/metabolismo , Células Endoteliales/citología , Células HEK293
3.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781967

RESUMEN

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Asunto(s)
Matriz Extracelular , Mucosa Intestinal , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesodermo/metabolismo , Mesodermo/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Morfogénesis , Metaloproteinasas de la Matriz/metabolismo
4.
J Exp Med ; 221(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085267

RESUMEN

Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling.


Asunto(s)
Interferón Tipo I , Interleucina-27 , Ratones , Animales , Interleucina-27/metabolismo , Linfocitos T Reguladores , Interferón Tipo I/metabolismo , Tolerancia Inmunológica , Factores de Transcripción Forkhead/metabolismo , Bacterias/metabolismo , Células Dendríticas
5.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187750

RESUMEN

Nature has likely sampled only a fraction of all protein sequences and structures allowed by the laws of biophysics. However, the combinatorial scale of amino-acid sequence-space has traditionally precluded substantive study of the full protein sequence-structure map. In particular, it remains unknown how much of the vast uncharted landscape of far-from-natural sequences consists of alternate ways to encode the familiar ensemble of natural folds; proteins in this category also represent an opportunity to diversify candidates for downstream applications. Here, we characterize sequence-structure mapping in far-from-natural regions of sequence-space guided by the capacity of protein language models (pLMs) to explore sequences outside their natural training data through generation. We demonstrate that pretrained generative pLMs sample a limited structural snapshot of the natural protein universe, including >350 common (sub)domain elements. Incorporating pLM, structure prediction, and structure-based search techniques, we surpass this limitation by developing a novel "foldtuning" strategy that pushes a pretrained pLM into a generative regime that maintains structural similarity to a target protein fold (e.g. TIM barrel, thioredoxin, etc) while maximizing dissimilarity to natural amino-acid sequences. We apply "foldtuning" to build a library of pLMs for >700 naturally-abundant folds in the SCOP database, accessing swaths of proteins that take familiar structures yet lie far from known sequences, spanning targets that include enzymes, immune ligands, and signaling proteins. By revealing protein sequence-structure information at scale outside of the context of evolution, we anticipate that this work will enable future systematic searches for wholly novel folds and facilitate more immediate protein design goals in catalysis and medicine.

6.
Nat Comput Sci ; 2(6): 387-398, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38177588

RESUMEN

Sequencing costs currently prohibit the application of single-cell mRNA-seq to many biological and clinical analyses. Targeted single-cell mRNA-sequencing reduces sequencing costs by profiling reduced gene sets that capture biological information with a minimal number of genes. Here we introduce an active learning method that identifies minimal but highly informative gene sets that enable the identification of cell types, physiological states and genetic perturbations in single-cell data using a small number of genes. Our active feature selection procedure generates minimal gene sets from single-cell data by employing an active support vector machine (ActiveSVM) classifier. We demonstrate that ActiveSVM feature selection identifies gene sets that enable ~90% cell-type classification accuracy across, for example, cell atlas and disease-characterization datasets. The discovery of small but highly informative gene sets should enable reductions in the number of measurements necessary for application of single-cell mRNA-seq to clinical tests, therapeutic discovery and genetic screens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...