Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nat Immunol ; 24(11): 1947-1959, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37845489

RESUMEN

Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.


Asunto(s)
Subgrupos de Linfocitos T , Transcriptoma , Niño , Humanos , Anciano , Envejecimiento/genética , Epítopos/metabolismo , Análisis de la Célula Individual
3.
Nat Commun ; 14(1): 3417, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296110

RESUMEN

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months following acute SARS-CoV-2 infection. The aetiologies may include persistent inflammation, unresolved tissue damage or delayed clearance of viral protein or RNA, but the biological differences they represent are not fully understood. Here we evaluate the serum proteome in samples, longitudinally collected from 55 PASC individuals with symptoms lasting ≥60 days after onset of acute infection, in comparison to samples from symptomatically recovered SARS-CoV-2 infected and uninfected individuals. Our analysis indicates heterogeneity in PASC and identified subsets with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly associated with TNF), appear to be the most differentially enriched signaling pathways, distinguishing a group of patients characterized also by a persistent neutrophil activation signature. These findings help to clarify biological diversity within PASC, identify participants with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance, including a protein panel that we propose as having diagnostic utility for differentiating inflammatory and non-inflammatory PASC.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , SARS-CoV-2 , Proteínas Sanguíneas , Progresión de la Enfermedad , Inflamación
4.
STAR Protoc ; 2(4): 100900, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34806044

RESUMEN

Deep immune profiling is essential for understanding the human immune system in health and disease. Successful biological interpretation of this data requires consistent laboratory processing with minimal batch-to-batch variation. Here, we detail a robust pipeline for the profiling of human peripheral blood mononuclear cells by both high-dimensional flow cytometry and single-cell RNA-seq. These protocols reduce batch effects, generate reproducible data, and increase throughput. For complete details on the use and execution of this protocol, please refer to Savage et al. (2021).


Asunto(s)
Citometría de Flujo/métodos , Leucocitos Mononucleares , Monitorización Inmunológica/métodos , Análisis de la Célula Individual/métodos , Biología Computacional , Humanos , Leucocitos Mononucleares/química , Leucocitos Mononucleares/clasificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Análisis de Secuencia de ARN
5.
Nat Neurosci ; 24(8): 1163-1175, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34140698

RESUMEN

The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease.


Asunto(s)
Cerebelo/embriología , Neurogénesis , Feto , Humanos , Captura por Microdisección con Láser , Análisis de la Célula Individual , Transcriptoma
6.
iScience ; 24(5): 102404, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34113805

RESUMEN

Multi-omic profiling of human peripheral blood is increasingly utilized to identify biomarkers and pathophysiologic mechanisms of disease. The importance of these platforms in clinical and translational studies led us to investigate the impact of delayed blood processing on the numbers and state of peripheral blood mononuclear cells (PBMC) and on the plasma proteome. Similar to previous studies, we show minimal effects of delayed processing on the numbers and general phenotype of PBMC up to 18 hours. In contrast, profound changes in the single-cell transcriptome and composition of the plasma proteome become evident as early as 6 hours after blood draw. These reflect patterns of cellular activation across diverse cell types that lead to progressive distancing of the gene expression state and plasma proteome from native in vivo biology. Differences accumulating during an overnight rest (18 hours) could confound relevant biologic variance related to many underlying disease states.

7.
bioRxiv ; 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34075380

RESUMEN

SARS-CoV-2 has infected over 200 million and caused more than 4 million deaths to date. Most individuals (>80%) have mild symptoms and recover in the outpatient setting, but detailed studies of immune responses have focused primarily on moderate to severe COVID-19. We deeply profiled the longitudinal immune response in individuals with mild COVID-19 beginning with early time points post-infection (1-15 days) and proceeding through convalescence to >100 days after symptom onset. We correlated data from single cell analyses of peripheral blood cells, serum proteomics, virus-specific cellular and humoral immune responses, and clinical metadata. Acute infection was characterized by vigorous coordinated innate and adaptive immune activation that differed in character by age (young vs. old). We then characterized signals associated with recovery and convalescence to define and validate a new signature of inflammatory cytokines, gene expression, and chromatin accessibility that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).

8.
Elife ; 102021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33835024

RESUMEN

Single-cell measurements of cellular characteristics have been instrumental in understanding the heterogeneous pathways that drive differentiation, cellular responses to signals, and human disease. Recent advances have allowed paired capture of protein abundance and transcriptomic state, but a lack of epigenetic information in these assays has left a missing link to gene regulation. Using the heterogeneous mixture of cells in human peripheral blood as a test case, we developed a novel scATAC-seq workflow that increases signal-to-noise and allows paired measurement of cell surface markers and chromatin accessibility: integrated cellular indexing of chromatin landscape and epitopes, called ICICLE-seq. We extended this approach using a droplet-based multiomics platform to develop a trimodal assay that simultaneously measures transcriptomics (scRNA-seq), epitopes, and chromatin accessibility (scATAC-seq) from thousands of single cells, which we term TEA-seq. Together, these multimodal single-cell assays provide a novel toolkit to identify type-specific gene regulation and expression grounded in phenotypically defined cell types.


Asunto(s)
Cromatina/metabolismo , Epigenómica/métodos , Epítopos/metabolismo , Regulación de la Expresión Génica , Transcriptoma , Humanos , Análisis de la Célula Individual
9.
Am J Hum Genet ; 105(3): 606-615, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474318

RESUMEN

Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.


Asunto(s)
Cerebelo/anomalías , Cerebelo/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Masculino , Embarazo
10.
Brain Res ; 1698: 179-186, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30081037

RESUMEN

The apolipoprotein E gene (APOE) is the strongest genetic risk factor for developing Alzheimer's disease (AD). Our recent identification of altered APOE DNA methylation in AD postmortem brain (PMB) prompted this follow-up study. Our goals were to (i) validate the AD-differential methylation of APOE in an independent PMB study cohort and (ii) determine the cellular populations (i.e., neuronal vs. non-neuronal) of AD PMB that contribute to this differential methylation. Here, we obtained an independent cohort of 57 PMB (42 AD and 15 controls) and quantified their APOE methylation levels from frontal lobe and cerebellar tissue. We also applied fluorescence-activated nuclei sorting (FANS) to separate neuronal nuclei from non-neuronal nuclei within the tissue of 15 AD and 14 control subjects. Bisulfite pyrosequencing was used to generate DNA methylation profiles of APOE from both bulk PMB and FANS nuclei. Our results provide independent validation that the APOE CGI holds lower DNA methylation levels in AD compared to control in frontal lobe but not cerebellar tissue. Our data also indicate that the non-neuronal cells of the AD brain, which are mainly composed of glia, are the main contributors to the lower APOE DNA methylation observed in AD PMB. Given that astrocytes are the primary producers of ApoE in the brain our results suggest that alteration of epigenetically regulated APOE expression in glia could be an important part of APOE's strong effect on AD risk.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Encéfalo/fisiopatología , Neuroglía/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Astrocitos/patología , Encéfalo/metabolismo , Islas de CpG , Metilación de ADN , Epigénesis Genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Neuroglía/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas
11.
ISME J ; 10(2): 333-45, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26208139

RESUMEN

Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.


Asunto(s)
Hierro/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Synechococcus/aislamiento & purificación , Synechococcus/metabolismo , Cartilla de ADN/genética , Ecotipo , Hierro/análisis , Océanos y Mares , Océano Pacífico , Filogenia , Prochlorococcus/genética , Prochlorococcus/metabolismo , Synechococcus/clasificación , Synechococcus/genética , Temperatura
12.
J Alzheimers Dis ; 48(3): 745-55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26402071

RESUMEN

The ɛ4 allele of the human apolipoprotein E gene (APOE) is a well-proven genetic risk factor for the late onset form of Alzheimer's disease (AD). However, the biological mechanisms through which the ɛ4 allele contributes to disease pathophysiology are incompletely understood. The three common alleles of APOE, ɛ2, ɛ3 and ɛ4, are defined by two single nucleotide polymorphisms (SNPs) that reside in the coding region of exon 4, which overlaps with a well-defined CpG island (CGI). Both SNPs change not only the protein codon but also the quantity of CpG dinucleotides, primary sites for DNA methylation. Thus, we hypothesize that the presence of an ɛ4 allele changes the DNA methylation landscape of the APOE CGI and that such epigenetic alteration contributes to AD susceptibility. To explore the relationship between APOE genotype, AD risk, and DNA methylation of the APOE CGI, we applied bisulfite pyrosequencing and evaluated methylation profiles of postmortem brain from 15 AD and 10 control subjects. We observed a tissue-specific decrease in DNA methylation with AD and identified two AD-specific differentially methylated regions (DMRs), which were also associated with APOE genotype. We further demonstrated that one DMR was completely un-methylated in a sub-population of genomes, possibly due to a subset of brain cells carrying deviated APOE methylation profiles. These data suggest that the APOE CGI is differentially methylated in AD brain in a tissue- and APOE-genotype-specific manner. Such epigenetic alteration might contribute to neural cell dysfunction in AD brain.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Islas de CpG , Metilación de ADN , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Cerebelo/metabolismo , Femenino , Lóbulo Frontal/metabolismo , Predisposición Genética a la Enfermedad , Genotipo , Hipocampo/metabolismo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Riesgo , Análisis de Secuencia de ADN
13.
Hum Mol Genet ; 22(24): 5036-47, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23892237

RESUMEN

The human apolipoprotein E (APOE) gene plays an important role in lipid metabolism. It has three common genetic variants, alleles ε2/ε3/ε4, which translate into three protein isoforms of apoE2, E3 and E4. These isoforms can differentially influence total serum cholesterol levels; therefore, APOE has been linked with cardiovascular disease. Additionally, its ε4 allele is strongly associated with the risk of Alzheimer's disease (AD), whereas the ε2 allele appears to have a modest protective effect for AD. Despite decades of research having illuminated multiple functional differences among the three apoE isoforms, the precise mechanisms through which different APOE alleles modify diseases risk remain incompletely understood. In this study, we examined the genomic structure of APOE in search for properties that may contribute novel biological consequences to the risk of disease. We identify one such element in the ε2/ε3/ε4 allele-carrying 3'-exon of APOE. We show that this exon is imbedded in a well-defined CpG island (CGI) that is highly methylated in the human postmortem brain. We demonstrate that this APOE CGI exhibits transcriptional enhancer/silencer activity. We provide evidence that this APOE CGI differentially modulates expression of genes at the APOE locus in a cell type-, DNA methylation- and ε2/ε3/ε4 allele-specific manner. These findings implicate a novel functional role for a 3'-exon CGI and support a modified mechanism of action for APOE in disease risk, involving not only the protein isoforms but also an epigenetically regulated transcriptional program at the APOE locus driven by the APOE CGI.


Asunto(s)
Apolipoproteínas E/genética , Elementos de Facilitación Genéticos , Epigénesis Genética , Transcriptoma , Composición de Base , Secuencia de Bases , Encéfalo/metabolismo , Línea Celular , Islas de CpG , Metilación de ADN , Exones , Regulación de la Expresión Génica , Orden Génico , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Elementos Silenciadores Transcripcionales , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA