Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 56, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216891

RESUMEN

The genomes of species belonging to the genus Colletotrichum harbor a substantial number of cytochrome P450 monooxygenases (CYPs) encoded by a broad diversity of gene families. However, the biological role of their CYP complement (CYPome) has not been elucidated. Here, we investigated the putative evolutionary scenarios that occurred during the evolution of the CYPome belonging to the Colletotrichum Graminicola species complex (s.c.) and their biological implications. The study revealed that most of the CYPome gene families belonging to the Graminicola s.c. experienced gene contractions. The reductive evolution resulted in species restricted CYPs are predominant in each CYPome of members from the Graminicola s.c., whereas only 18 families are absolutely conserved among these species. However, members of CYP families displayed a notably different phylogenetic relationship at the tertiary structure level, suggesting a putative convergent evolution scenario. Most of the CYP enzymes of the Graminicola s.c. share redundant functions in secondary metabolite biosynthesis and xenobiotic metabolism. Hence, this current work suggests that the presence of a broad CYPome in the genus Colletotrichum plays a critical role in the optimization of the colonization capability and virulence.


Asunto(s)
Colletotrichum , Colletotrichum/genética , Colletotrichum/metabolismo , Filogenia , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Huésped-Patógeno/genética , Genoma
2.
Plant Dis ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208822

RESUMEN

Maize (Zea mays) is one of the most important crops worldwide, and fungal diseases are responsible for major losses in food production. Anthracnose caused by Colletotrichum graminicola can infect all maize tissues, although stalk rot and seedling blight cause more significant economic damage (Munkvold and White, 2016). Anthracnose stalk rot is characterized by a distinctive external blackening of the lower stalks resulting in large black streaks, while the pith turns dark brown and has a shredded appearance. Like most stalk rots, the most obvious symptom is a sudden death of plants before grain maturity, and plant lodging. Symptoms commonly appear late in the season, suspicious maize stems of cultivar Tuy exhibiting symptoms of anthracnose stalk rot were collected from a field in Pontevedra, Galicia, Spain (Geographical coordinates: 42°23'27.1" N - 8°30'46.3" W) between June and December of 2022. Stem samples, approximately 50 mm2, were dissected and surface-disinfected for 90 seconds in 20% sodium hypochlorite (v/v) and rinsed three times in sterile distilled water. The samples were transferred to one half-strength acidified potato dextrose agar (PDA) supplemented with ampicillin (100 µg/mL) and lactic acid 90% (1.5 mL/L) and incubated for 5 days at 25 ºC (Sukno et al. 2008). Single spores were transferred to fresh PDA plates to obtain pure culture isolates. A total of six isolates were obtained, and among them, two were selected for further characterization (SP-36820-1 and SP-36820-3). Colonies grown on PDA have dark gray aerial mycelium with orange-colored spore masses. Conidia are falcate, slightly curved, tapered toward the tips, and are produced in acervuli with setae, measuring 37.65 to 24.84 x 8.02 to 4.67 µm, respectively (n = 100). These morphological characteristics are in agreement with C. graminicola previously described by Bergstrom and Nicholson (1999). Isolates were grown in potato dextrose broth (PDB) for 3 days at 25 ºC and total genomic DNA was extracted using a DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA, USA). The internal transcribed spacer region of rDNA and the manganese-type superoxide dismutase gene (SOD2) were amplified using primers ITS4/ITS5 (White et al. 1990) and SOD625/SOD507 (Fang et al. 2002) and consequently sequenced. GenBank BLAST analysis revealed that the sequences were 100% identical to strains of C. graminicola. All sequences were deposited in GenBank (see e-Xtra 1 for accession numbers). To confirm Koch's postulates, plants of a derivative of maize inbred line Mo940 (developmental stage V3) were placed horizontally in a tray for inoculation and 20 droplets (7.5 µL) of a suspension of 3 x 105 conidia per milliliter were placed on the surface of the third leaf. The trays were closed to retain moisture and incubated overnight at 23ºC. The next day, the plants were returned to a vertical position and incubated in a growth chamber at 25ºC with 80% humidity and a light cycle of 16 h of light and 8 h of dark (Vargas et al. 2012). After four days inoculated leaves presented brown elongated lesions with necrotic centers consistent with C. graminicola infection, whereas control plants remained asymptomatic. The strains reisolated from infected leaves were morphologically identical to the original isolates. To our knowledge, this is the first report of Colletotrichum graminicola causing maize anthracnose in Spain. Recently, maize anthracnose was also reported in Bosnia and Herzegovina and China (Duan et al. 2019; Cuevas-Fernández et al. 2019), suggesting the pathogen's geographic range is increasing, which may be a threat to maize cultivation in locations with optimal humid conditions for disease development.

3.
Front Microbiol ; 14: 1129319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032845

RESUMEN

The fungal pathogen Colletotrichum graminicola causes the anthracnose of maize (Zea mays) and is responsible for significant yield losses worldwide. The genome of C. graminicola was sequenced in 2012 using Sanger sequencing, 454 pyrosequencing, and an optical map to obtain an assembly of 13 pseudochromosomes. We re-sequenced the genome using a combination of short-read (Illumina) and long-read (PacBio) technologies to obtain a chromosome-level assembly. The new version of the genome sequence has 13 chromosomes with a total length of 57.43 Mb. We detected 66 (23.62 Mb) structural rearrangements in the new assembly with respect to the previous version, consisting of 61 (21.98 Mb) translocations, 1 (1.41 Mb) inversion, and 4 (221 Kb) duplications. We annotated the genome and obtained 15,118 predicted genes and 3,614 new gene models compared to the previous version of the assembly. We show that 25.88% of the new assembly is composed of repetitive DNA elements (13.68% more than the previous assembly version), which are mostly found in gene-sparse regions. We describe genomic compartmentalization consisting of repeat-rich and gene-poor regions vs. repeat-poor and gene-rich regions. A total of 1,140 secreted proteins were found mainly in repeat-rich regions. We also found that ~75% of the three smallest chromosomes (minichromosomes, between 730 and 551 Kb) are strongly affected by repeat-induced point mutation (RIP) compared with 28% of the larger chromosomes. The gene content of the minichromosomes (MCs) comprises 121 genes, of which 83.6% are hypothetical proteins with no predicted function, while the mean percentage of Chr1-Chr10 is 36.5%. No predicted secreted proteins are present in the MCs. Interestingly, only 2% of the genes in Chr11 have homologs in other strains of C. graminicola, while Chr12 and 13 have 58 and 57%, respectively, raising the question as to whether Chrs12 and 13 are dispensable. The core chromosomes (Chr1-Chr10) are very different with respect to the MCs (Chr11-Chr13) in terms of the content and sequence features. We hypothesize that the higher density of repetitive elements and RIPs in the MCs may be linked to the adaptation and/or host co-evolution of this pathogenic fungus.

4.
mBio ; 14(1): e0287822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36533926

RESUMEN

Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. IMPORTANCE Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.


Asunto(s)
Colletotrichum , Zea mays , Metagenómica , Ecosistema , Secuencia de Bases , Enfermedades de las Plantas , Variación Genética
5.
Front Plant Sci ; 13: 1046418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507428

RESUMEN

Introduction: Soybean (Glycine max) is among the most important crops in the world, and its production can be threatened by biotic diseases, such as anthracnose. Soybean anthracnose is a seed-borne disease mainly caused by the hemibiotrophic fungus Colletotrichum truncatum. Typical symptoms are pre- and post-emergence damping off and necrotic lesions on cotyledons, petioles, leaves, and pods. Anthracnose symptoms can appear early in the field, causing major losses to soybean production. Material and Methods: In preliminary experiments, we observed that the same soybean cultivar can have a range of susceptibility towards different strains of C. truncatum, while the same C. truncatum strain can cause varying levels of disease severity in different soybean cultivars. To gain a better understanding of the molecular mechanisms regulating the early response of different soybean cultivars to different C. truncatum strains, we performed pathogenicity assays to select two soybean cultivars with significantly different susceptibility to two different C. truncatum strains and analyzed their transcriptome profiles at different time points of interaction (0, 12, 48, and 120 h post-inoculation, hpi). Results and Discussion: The pathogenicity assays showed that the soybean cultivar Gm1 is more resistant to C. truncatum strain 1080, and it is highly susceptible to strain 1059, while cultivar Gm2 shows the opposite behavior. However, if only trivial anthracnose symptoms appeared in the more resistant phenotype (MRP; Gm1-1080; Gm2-1059) upon 120 hpi, in the more susceptible phenotype (MSP; Gm-1059; Gm2- 1080) plants show mild symptoms already at 72 hpi, after which the disease evolved rapidly to severe necrosis and plant death. Interestingly, several genes related to different cellular responses of the plant immune system (pathogen recognition, signaling events, transcriptional reprogramming, and defense-related genes) were commonly modulated at the same time points only in both MRP. The list of differentially expressed genes (DEGs) specific to the more resistant combinations and related to different cellular responses of the plant immune system may shed light on the important host defense pathways against soybean anthracnose.

6.
Pathogens ; 10(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34832675

RESUMEN

Colletotrichum is one of the most important plant pathogenic genus of fungi due to its scientific and economic impact. A wide range of hosts can be infected by Colletotrichum spp., which causes losses in crops of major importance worldwide, such as soybean. Soybean anthracnose is mainly caused by C. truncatum, but other species have been identified at an increasing rate during the last decade, becoming one of the most important limiting factors to soybean production in several regions. To gain a better understanding of the evolutionary origin of soybean anthracnose, we compared the repertoire of effector candidates of four Colletotrichum species pathogenic to soybean and eight species not pathogenic. Our results show that the four species infecting soybean belong to two lineages and do not share any effector candidates. These results strongly suggest that two Colletotrichum lineages have acquired the capability to infect soybean independently. This study also provides, for each lineage, a set of candidate effectors encoding genes that may have important roles in pathogenicity towards soybean offering a new resource useful for further research on soybean anthracnose management.

7.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830343

RESUMEN

Colletotrichum is a plant pathogenic fungus which is able to infect virtually every economically important plant species. Up to now no common infection mechanism has been identified comparing different plant and Colletotrichum species. Plant hormones play a crucial role in plant-pathogen interactions regardless whether they are symbiotic or pathogenic. In this review we analyze the role of ethylene, abscisic acid, jasmonic acid, auxin and salicylic acid during Colletotrichum infections. Different Colletotrichum strains are capable of auxin production and this might contribute to virulence. In this review the role of different plant hormones in plant-Colletotrichum interactions will be discussed and thereby auxin biosynthetic pathways in Colletotrichum spp. will be proposed.


Asunto(s)
Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Etilenos/biosíntesis , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Ácido Abscísico/farmacología , Colletotrichum/genética , Colletotrichum/crecimiento & desarrollo , Colletotrichum/patogenicidad , Productos Agrícolas/microbiología , Ciclopentanos/farmacología , Resistencia a la Enfermedad/genética , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Humanos , Ácidos Indolacéticos/farmacología , Redes y Vías Metabólicas/genética , Oxilipinas/farmacología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Plantas/microbiología , Ácido Salicílico/farmacología
8.
Front Plant Sci ; 12: 663870, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936154

RESUMEN

Botrytis cinerea is a necrotrophic plant pathogenic fungus with a wide host range. Its natural populations are phenotypically and genetically very diverse. A survey of B. cinerea isolates causing gray mold in the vineyards of Castilla y León, Spain, was carried out and as a result eight non-pathogenic natural variants were identified. Phenotypically these isolates belong to two groups. The first group consists of seven isolates displaying a characteristic mycelial morphotype, which do not sporulate and is unable to produce sclerotia. The second group includes one isolate, which sporulates profusely and does not produce sclerotia. All of them are unresponsive to light. Crosses between a representative mycelial non-pathogenic isolate and a highly aggressive field isolate revealed that the phenotypic differences regarding pathogenicity, sporulation and production of sclerotia cosegregated in the progeny and are determined by a single genetic locus. By applying a bulked segregant analysis strategy based on the comparison of the two parental genomes the locus was mapped to a 110 kb region in chromosome 4. Subcloning and transformation experiments revealed that the polymorphism is an SNP affecting gene Bcin04g03490 in the reference genome of B. cinerea. Genetic complementation analysis and sequencing of the Bcin04g03490 alleles demonstrated that the mutations in the mycelial isolates are allelic and informed about the nature of the alterations causing the phenotypes observed. Integration of the allele of the pathogenic isolate into the non-pathogenic isolate fully restored the ability to infect, to sporulate and to produce sclerotia. Therefore, it is concluded that a major effect gene controlling differentiation and developmental processes as well as pathogenicity has been identified in B. cinerea. It encodes a protein with a GAL4-like Zn(II)2Cys6 binuclear cluster DNA binding domain and an acetyltransferase domain, suggesting a role in regulation of gene expression through a mechanism involving acetylation of specific substrates.

9.
Mol Plant Pathol ; 22(4): 393-409, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609073

RESUMEN

Soybean (Glycine max) is one of the most important cultivated plants worldwide as a source of protein-rich foods and animal feeds. Anthracnose, caused by different lineages of the hemibiotrophic fungus Colletotrichum, is one of the main limiting factors to soybean production. Losses due to anthracnose have been neglected, but their impact may threaten up to 50% of the grain production. TAXONOMY: While C. truncatum is considered the main species associated with soybean anthracnose, recently other species have been reported as pathogenic on this host. Until now, it has not been clear whether the association of new Colletotrichum species with the disease is related to emerging species or whether it is due to the undergoing changes in the taxonomy of the genus. DISEASE SYMPTOMS: Typical anthracnose symptoms are pre- and postemergence damping-off; dark, depressed, and irregular spots on cotyledons, stems, petioles, and pods; and necrotic laminar veins on leaves that can result in premature defoliation. Symptoms may evolve to pod rot, immature opening of pods, and premature germination of grains. CHALLENGES: As accurate species identification of the causal agent is decisive for disease control and prevention, in this work we review the taxonomic designation of Colletotrichum isolated from soybean to understand which lineages are pathogenic on this host. We also present a comprehensive literature review of soybean anthracnose, focusing on distribution, symptomatology, epidemiology, disease management, identification, and diagnosis. We consider the knowledge emerging from population studies and comparative genomics of Colletotrichum spp. associated with soybean providing future perspectives in the identification of molecular factors involved in the pathogenicity process. USEFUL WEBSITE: Updates on Colletotrichum can be found at http://www.colletotrichum.org/. All available Colletotrichum genomes on GenBank can be viewed at http://www.colletotrichum.org/genomics/.


Asunto(s)
Colletotrichum/aislamiento & purificación , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Colletotrichum/patogenicidad , Hojas de la Planta/microbiología , Virulencia
10.
Front Microbiol ; 11: 559728, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013792

RESUMEN

Microbes form close associations with host plants including rice as both surface (epiphytes) and internal (endophytes) inhabitants. Yet despite rice being one of the most important cereal crops agriculturally and economically, knowledge of its microbiome, particularly core inhabitants and any functional properties bestowed is limited. In this study, the microbiome in rice seedlings derived directly from seeds was identified, characterized and compared to the microbiome of the seed. Rice seeds were sourced from two different locations in Arkansas, USA of two different rice genotypes (Katy, M202) from two different harvest years (2013, 2014). Seeds were planted in sterile media and bacterial as well as fungal communities were identified through 16S and ITS sequencing, respectively, for four seedling compartments (root surface, root endosphere, shoot surface, shoot endosphere). Overall, 966 bacterial and 280 fungal ASVs were found in seedlings. Greater abundance and diversity were detected for the microbiome associated with roots compared to shoots and with more epiphytes than endophytes. The seedling compartments were the driving factor for microbial community composition rather than other factors such as rice genotype, location and harvest year. Comparison with datasets from seeds revealed that 91 (out of 296) bacterial and 11 (out of 341) fungal ASVs were shared with seedlings with the majority being retained within root tissues. Core bacterial and fungal microbiome shared across seedling samples were identified. Core bacteria genera identified in this study such as Rhizobium, Pantoea, Sphingomonas, and Paenibacillus have been reported as plant growth promoting bacteria while core fungi such as Pleosporales, Alternaria and Occultifur have potential as biocontrol agents.

12.
Phytopathology ; 110(9): 1497-1499, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32352862

RESUMEN

Colletotrichum is a large genus of plant pathogenic fungi comprising more than 200 species. In this work, we present the genome sequences of four Colletotrichum species pathogenic to soybean: C. truncatum, C. plurivorum, C. musicola, and C. sojae. While C. truncatum is globally considered the most important pathogen, the other three species have been described and associated with soybean only recently. The genome sequences will provide insights into factors that contribute to pathogenicity toward soybean and will be useful for further research into the evolution of Colletotrichum.


Asunto(s)
Colletotrichum , Enfermedades de las Plantas , Glycine max , Virulencia
13.
Sci Rep ; 10(1): 5250, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251355

RESUMEN

Fungal plant pathogens remain a serious threat to the sustainable agriculture and forestry, despite the extensive efforts undertaken to control their spread. White root rot disease is threatening rubber tree (Hevea brasiliensis) plantations throughout South and Southeast Asia and Western Africa, causing tree mortality and severe yield losses. Here, we report the complete genome sequence of the basidiomycete fungus Rigidoporus microporus, a causative agent of the disease. Our phylogenetic analysis confirmed the position of R. microporus among the members of Hymenochaetales, an understudied group of basidiomycetes. Our analysis further identified pathogen's genes with a predicted role in the decay of plant cell wall polymers, in the utilization of latex components and in interspecific interactions between the pathogen and other fungi. We also detected putative horizontal gene transfer events in the genome of R. microporus. The reported first genome sequence of a tropical rubber tree pathogen R. microporus should contribute to the better understanding of how the fungus is able to facilitate wood decay and nutrient cycling as well as tolerate latex and utilize resinous extractives.


Asunto(s)
Proteínas Fúngicas/genética , Látex/metabolismo , Polyporales/genética , Polyporales/patogenicidad , Madera/microbiología , Pared Celular/metabolismo , Pared Celular/microbiología , Enzimas/genética , Enzimas/metabolismo , Regulación Fúngica de la Expresión Génica , Transferencia de Gen Horizontal , Genoma Fúngico , Interacciones Huésped-Patógeno/genética , Interacciones Microbianas/genética , Filogenia , Polyporales/metabolismo , Metabolismo Secundario , Madera/metabolismo
14.
Mol Plant Microbe Interact ; 31(10): 979-981, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29649963

RESUMEN

Colletotrichum orchidophilum is a plant-pathogenic fungus infecting a wide range of plant species belonging to the family Orchidaceae. In addition to its economic impact, C. orchidophilum has been used in recent years in evolutionary studies because it represents the closest related species to the C. acutatum species complex. Here, we present the first-draft whole-genome sequence of C. orchidophilum IMI 309357, providing a resource for future research on anthracnose of Orchidaceae and other hosts.


Asunto(s)
Colletotrichum/genética , Genoma Fúngico , Orchidaceae/microbiología , ADN de Hongos/genética , Enfermedades de las Plantas/microbiología , Secuenciación Completa del Genoma
15.
Front Microbiol ; 8: 2001, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075253

RESUMEN

Colletotrichum spp. infect a wide diversity of hosts, causing plant diseases on many economically important crops worldwide. The genus contains approximately 189 species organized into at least 11 major phylogenetic lineages, also known as species complexes. The Colletotrichum acutatum species complex is a diverse yet relatively closely related group of plant pathogenic fungi within this genus. Within the species complex we find a wide diversity of important traits such as host range and host preference, mode of reproduction and differences in the strategy used to infect their hosts. Research on fungal comparative genomics have attempted to find correlations in these traits and patterns of gene family evolution but such studies typically compare fungi from different genera or even different fungal Orders. The C. acutatum species complex contains most of this diversity within a group of relatively closely related species. This Perspective article presents a review of the current knowledge on C. acutatum phylogeny, biology, and pathology. It also demonstrates the suitability of C. acutatum for the study of gene family evolution on a fine scale to uncover evolutionary events in the genome that are associated with the evolution of phenotypic characters important for host interactions.

16.
BMC Genomics ; 18(1): 667, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851275

RESUMEN

BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.


Asunto(s)
Cromosomas Fúngicos/genética , Colletotrichum/genética , Colletotrichum/metabolismo , Elementos Transponibles de ADN/genética , Genómica , Familia de Multigenes/genética , Recombinación Homóloga/genética , Anotación de Secuencia Molecular , Filogenia , Mutación Puntual/genética
17.
Genom Data ; 10: 151-152, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27872817

RESUMEN

Diaporthe helianthi is a fungus pathogenic to sunflower. Virulent strains of this fungus cause stem canker with important yield losses and reduction of oil content. Here we present the first draft whole-genome sequence of the highly virulent isolate D. helianthi strain 7/96, thus providing a useful platform for future research on stem canker of sunflower and fungal genomics. The genome sequence of the D. helianthi isolate 7/96 was deposited at DDBJ/ENA/GenBank under the accession number MAVT00000000 (BioProject PRJNA327798).

19.
BMC Genomics ; 17: 555, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27496087

RESUMEN

BACKGROUND: Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. RESULTS: We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. CONCLUSIONS: This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content.


Asunto(s)
Colletotrichum/genética , Genes Fúngicos , Especificidad del Huésped/genética , Familia de Multigenes , Análisis por Conglomerados , Biología Computacional/métodos , Evolución Molecular , Genoma Fúngico , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Anotación de Secuencia Molecular , Necrosis , Filogenia
20.
Genome Announc ; 4(4)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540062

RESUMEN

Colletotrichum higginsianum is an ascomycete fungus causing anthracnose disease on numerous cultivated plants in the family Brassicaceae, as well as the model plant Arabidopsis thaliana We report an assembly of the nuclear genome and gene annotation of this pathogen, which was obtained using a combination of PacBio long-read sequencing and optical mapping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA