Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 385(3): 162-170, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36669877

RESUMEN

Synthetic cathinones are a class of new psychoactive substances that display psychomotor stimulant properties, and novel cathinone analogs continue to emerge in illicit drug markets worldwide. The aim of the present study was to characterize the pharmacology of 4-chloro ring-substituted cathinones that are appearing in illicit drug markets compared with the effects of 4-methylmethcathinone (mephedrone). Synaptosomes were prepared from rat caudate for dopamine transporter (DAT) assays or from whole brain minus caudate and cerebellum for norepinephrine transporter (NET) and serotonin transporter (SERT) assays. Findings from transporter uptake inhibition and release assays showed that mephedrone and 4-chloromethcathinone (4-CMC) function as substrates at DAT, NET, and SERT, with similar potency at all three transporters. In contrast, 4-chloro-α-pyrrolidinopropiophenone (4-CαPPP) was an uptake inhibitor at DAT and NET, with similar potency at each site, but had little activity at SERT. 4-Chloroethcathinone (4-CEC) was a low-potency uptake inhibitor at DAT and NET but a substrate at SERT. In rats implanted with telemetry transmitters, mephedrone and 4-CMC increased blood pressure, heart rate, and locomotor activity to a similar extent. 4-CEC and 4-CαPPP were less potent at increasing blood pressure and had modest stimulatory effects on heart rate and activity. 4-CMC also transiently decreased temperature at the highest dose tested. All three 4-chloro ring-substituted cathinones are biologically active, but only 4-CMC has potency comparable to mephedrone. Collectively, our findings suggest that 4-CMC and other 4-chloro cathinones may have abuse potential and adverse effects in humans that are analogous to those associated with mephedrone. SIGNIFICANCE STATEMENT: The 4-chloro ring-substituted cathinones all produced significant cardiovascular stimulation, with 4-chloromethcathinone (4-CMC) showing potency similar to mephedrone. All of the drugs are likely to be abused given their effects at the dopamine transporter, particularly 4-CMC.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Drogas Ilícitas , Metanfetamina , Humanos , Ratas , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Cathinona Sintética , Metanfetamina/farmacología , Fármacos del Sistema Nervioso Central , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Estimulantes del Sistema Nervioso Central/farmacología
2.
Psychopharmacology (Berl) ; 239(11): 3723-3730, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36190536

RESUMEN

RATIONALE: Synthetic phenethylamine (PEA) analogs, such as ß-methylphenethylamine (BMPEA) and N,α-diethylphenethylamine (DEPEA), are often found in dietary supplements, despite regulations prohibiting their sale. PEA analogs are structurally related to amphetamine, and we have shown that BMPEA and DEPEA produce cardiovascular stimulation mimicking the effects of amphetamine. However, few studies have examined behavioral effects of BMPEA, DEPEA, and other PEA analogs. OBJECTIVES: Here, we examined the reinforcing effects of α-ethylphenethylamine (AEPEA, 1 mg/kg/injection), DEPEA (1 mg/kg/injection), and BMPEA (3 mg/kg/injection) as compared to amphetamine (0.1 mg/kg/injection) using a fixed-ratio 1 self-administration paradigm in male rats. METHODS: Male rats were trained in self-administration chambers containing 2 nose-poke holes. A nose-poke response in the active hole delivered drug or saline, whereas a nose-poke response in the inactive hole had no programmed consequence. Four groups of rats were initially trained for 10 days with the doses noted above. Upon acquisition of drug self-administration, a dose-effect function was determined by training rats on 3 additional doses for 3 days each. A separate group of rats was trained with saline. RESULTS: Male rats self-administered each PEA analog and amphetamine, as shown by significant increases in active responses versus inactive responses. Subsequent dose-response testing showed clear differences in potency of the compounds. Amphetamine showed a typical inverted U-shaped dose-effect function, peaking at 0.1 mg/kg/injection. AEPEA and DEPEA also showed inverted dose-effect functions, with each peaking at 0.3 mg/kg/injection. BMPEA did not show an inverted U-shaped dose-effect function, but active responding slowly increased up to a dose of 6 mg/kg/injection. CONCLUSIONS: Taken together, our findings indicate that dietary supplements containing PEA analogs may have significant abuse liability when used recreationally.


Asunto(s)
Anfetamina , Fenetilaminas , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Anfetamina/farmacología , Fenetilaminas/farmacología , Autoadministración , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga
3.
J Pharmacol Exp Ther ; 376(1): 118-126, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33082158

RESUMEN

Dietary supplements often contain additives not listed on the label, including α-ethyl homologs of amphetamine such as N,α-diethylphenethylamine (DEPEA). Here, we examined the neurochemical and cardiovascular effects of α-ethylphenethylamine (AEPEA), N-methyl-α-ethylphenethylamine (MEPEA), and DEPEA as compared with the effects of amphetamine. All drugs were tested in vitro using uptake inhibition and release assays for monoamine transporters. As expected, amphetamine acted as a potent and efficacious releasing agent at dopamine transporters (DAT) and norepinephrine transporters (NET) in vitro. AEPEA and MEPEA were also releasers at catecholamine transporters, with greater potency at NET than DAT. DEPEA displayed fully efficacious release at NET but weak partial release at DAT (i.e., 40% of maximal effect). In freely moving, conscious male rats fitted with biotelemetry transmitters for physiologic monitoring, amphetamine (0.1-3.0 mg/kg, s.c.) produced robust dose-related increases in blood pressure (BP), heart rate (HR), and motor activity. AEPEA (1-10 mg/kg, s.c.) produced significant increases in BP but not HR or activity, whereas DEPEA and MEPEA (1-10 mg/kg, s.c.) increased BP, HR, and activity. In general, the phenethylamine analogs were approximately 10-fold less potent than amphetamine. Our results show that α-ethylphenethylamine analogs are biologically active. Although less potent than amphetamine, they produce cardiovascular effects that could pose risks to humans. Given that MEPEA and DEPEA increased locomotor activity, these substances may also have significant abuse potential. SIGNIFICANCE STATEMENT: The α-ethyl homologs of amphetamine have significant cardiovascular, behavioral, and neurochemical effects in rats. Given that these compounds are often not listed on the ingredient labels of dietary supplements, these compounds could pose a risk to humans using these products.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Butilaminas/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Metanfetamina/análogos & derivados , Movimiento/efectos de los fármacos , Fenetilaminas/farmacología , Animales , Proteínas de Transporte de Catecolaminas en la Membrana Plasmática/metabolismo , Suplementos Dietéticos/efectos adversos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Metanfetamina/farmacología , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Addict Biol ; 25(6): e12842, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31724254

RESUMEN

The synthetic cathinone α-pyrrolidinovalerophenone (α-PVP) continues to be abused despite being banned by regulatory agencies. The abused formulation of α-PVP is a racemic mixture consisting of two enantiomers, S-α-PVP and R-α-PVP. In this study, we investigated the neurochemical, behavioral, and cardiovascular effects of racemic α-PVP and its enantiomers in male rats. Racemic α-PVP blocked the uptake of both dopamine and norepinephrine ex vivo, but did not block the uptake of serotonin (5-HT), at their respective transporters. S-α-PVP was slightly more potent than racemic α-PVP, while R-α-PVP was 10 to 20 times less potent at blocking dopamine and norepinephrine uptake. In microdialysis studies, racemic and S-α-PVP increased extracellular dopamine levels in the nucleus accumbens, but not levels of 5-HT. Racemic and S-α-PVP also increased locomotor activity. When tested at the same doses, S-α-PVP produced larger effects than racemic α-PVP. R-α-PVP also increased extracellular dopamine levels and locomotor activity, but only at 30 times higher doses than S-α-PVP. Racemic and S-α-PVP were self-administered by rats at 0.03 mg/kg/injection, whereas R-α-PVP was self-administered at a 10 times higher dose. Dose-effect determinations following acquisition suggested that R-α-PVP was at least 30 times less potent than S-α-PVP. Finally, racemic and S-α-PVP increased blood pressure and heart rate at doses approximately 30 times less than was required for R-α-PVP to produce similar effects. These results show that the neurochemical, behavioral, and cardiovascular effects of racemic α-PVP most likely reflect the actions of S isomer.


Asunto(s)
Pirrolidinas/farmacología , Trastornos Relacionados con Sustancias , Animales , Presión Arterial/efectos de los fármacos , Dopamina/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Microdiálisis , Núcleo Accumbens/efectos de los fármacos , Pirrolidinas/administración & dosificación , Pirrolidinas/química , Ratas , Ratas Sprague-Dawley , Autoadministración , Serotonina/metabolismo , Estereoisomerismo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/psicología
5.
J Pharmacol Exp Ther ; 371(3): 602-614, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31562201

RESUMEN

Opioid and cocaine abuse are major public health burdens. Existing medications for opioid use disorder are limited by abuse liability and side effects, whereas no treatments are currently approved in the United States for cocaine use disorder. Dopamine D3 receptor (D3R) antagonists have shown promise in attenuating opioid and cocaine reward and mitigating relapse in preclinical models. However, translation of D3R antagonists to the clinic has been hampered by reports that the D3R antagonists GSK598,809 (5-(5-((3-((1S,5R)-1-(2-fluoro-4-(trifluoromethyl)phenyl)-3-azabicyclo[3.1.0]hexan-3-yl)propyl)thio)-4-methyl-4H-1,2,4-triazol-3-yl)-4-methyloxazole) and SB-277,011A (2-(2-((1r,4r)-4-(2-oxo-2-(quinolin-4-yl)ethyl)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile) have adverse cardiovascular effects in the presence of cocaine. Recently, we developed two structurally novel D3R antagonists, R-VK4-40 and R-VK4-116, which are highly selective for D3R and display translational potential for treatment of opioid use disorder. Here, we tested whether R-VK4-40 ((R)-N-(4-(4-(2-Chloro-3-ethylphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) and R-VK4-116 ((R)-N-(4-(4-(3-Chloro-5-ethyl-2-methoxyphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) have unwanted cardiovascular effects in the presence of oxycodone, a prescription opioid, or cocaine in freely moving rats fitted with surgically implanted telemetry transmitters. We also examined cardiovascular effects of the D3R antagonist, SB-277,011A, and L-741,626 (1-((1H-indol-3-yl)methyl)-4-(4-chlorophenyl)piperidin-4-ol), a dopamine D2 receptor-selective antagonist, for comparison. Consistent with prior reports, SB-277,011A increased blood pressure, heart rate, and locomotor activity alone and in the presence of cocaine. L-741,626 increased blood pressure and heart rate. In contrast, R-VK4-40 alone dose-dependently reduced blood pressure and heart rate and attenuated oxycodone-induced increases in blood pressure and oxycodone or cocaine-induced increases in heart rate. Similarly, R-VK4-116 alone dose-dependently reduced cocaine-induced increases in blood pressure and heart rate. These results highlight the safety of new D3R antagonists and support the continued development of R-VK4-40 and R-VK4-116 for the treatment of opioid and cocaine use disorders. SIGNIFICANCE STATEMENT: Opioid and cocaine abuse are major public health challenges and new treatments that do not adversely impact the cardiovascular system are needed. Here, we show that two structurally novel dopamine D3 receptor antagonists, R-VK4-40 and R-VK4-116, do not potentiate, and may even protect against, oxycodone- or cocaine-induced changes in blood pressure and heart rate, supporting their further development for the treatment of opioid and/or cocaine use disorders.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Cocaína/farmacología , Antagonistas de Dopamina/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Indoles/farmacología , Oxicodona/farmacología , Piperazinas/farmacología , Receptores de Dopamina D3/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Masculino , Nitrilos/farmacología , Piperidinas/farmacología , Ratas , Ratas Long-Evans , Tetrahidroisoquinolinas/farmacología
6.
J Pharmacol Exp Ther ; 369(3): 328-336, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30898867

RESUMEN

ß-Methylphenethylamine [(BMPEA), 2-phenylpropan-1-amine] is a structural isomer of amphetamine (1-phenylpropan-2-amine) that has been identified in preworkout and weight loss supplements, yet little information is available about its pharmacology. Here, the neurochemical and cardiovascular effects of BMPEA and its analogs, N-methyl-2-phenylpropan-1-amine (MPPA) and N,N-dimethyl-2-phenylpropan-1-amine (DMPPA), were compared with structurally related amphetamines. As expected, amphetamine and methamphetamine were potent substrate-type releasing agents at dopamine transporters (DATs) and norepinephrine transporters (NETs) in rat brain synaptosomes. BMPEA and MPPA were also substrates at DATs and NETs, but they were at least 10-fold less potent than amphetamine. DMPPA was a weak substrate only at NETs. Importantly, the releasing actions of BMPEA and MPPA were more potent at NETs than DATs. Amphetamine produced significant dose-related increases in blood pressure (BP), heart rate (HR), and locomotor activity in conscious rats fitted with surgically implanted biotelemetry transmitters. BMPEA, MPPA, and DMPPA produced increases in BP that were similar to the effects of amphetamine, but the compounds failed to substantially affect HR or activity. The hypertensive effect of BMPEA was reversed by the α-adrenergic antagonist prazosin but not the ganglionic blocker chlorisondamine. Radioligand binding at various G protein-coupled receptors did not identify nontransporter sites of action that could account for cardiovascular effects of BMPEA or its analogs. Our results show that BMPEA, MPPA, and DMPPA are biologically active. The compounds are unlikely to be abused due to weak effects at DATs, but they could produce adverse cardiovascular effects via substrate activity at peripheral NET sites.


Asunto(s)
Anfetaminas/efectos adversos , Presión Sanguínea/efectos de los fármacos , Suplementos Dietéticos/efectos adversos , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Animales , Frecuencia Cardíaca/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Temperatura
7.
Drug Alcohol Depend ; 179: 387-394, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28846955

RESUMEN

BACKGROUND: The misuse of synthetic cannabinoids is a persistent public health concern. Because these drugs target the same cannabinoid receptors as the active ingredient of marijuana, Δ9-tetrahydrocannabinol (THC), we compared the effects of synthetic cannabinoids and THC on body temperature and cardiovascular parameters. METHODS: Biotelemetry transmitters for the measurement of body temperature or blood pressure (BP) were surgically implanted into separate groups of male rats. THC and the synthetic cannabinoids CP55,940, JWH-018, AM2201 and XLR-11 were injected s.c., and rats were placed into isolation cubicles for 3h. RESULTS: THC and synthetic cannabinoids produced dose-related decreases in body temperature that were most prominent in the final 2h of the session. The rank order of potency was CP55,940>AM2201=JWH-018>THC=XLR-11. The cannabinoid inverse agonist rimonabant antagonized the hypothermic effect of all compounds. Synthetic cannabinoids elevated BP in comparison to vehicle treatment during the first h of the session, while heart rate was unaffected. The rank order of potency for BP increases was similar to that seen for hypothermia. Hypertensive effects of CP55,940 and JWH-018 were not antagonized by rimonabant or the neutral antagonist AM4113. However, the BP responses to both drugs were antagonized by pretreatment with either the ganglionic blocker hexamethonium or the α1 adrenergic antagonist prazosin. CONCLUSIONS: Our results show that synthetic cannabinoids produce hypothermia in rats by a mechanism involving cannabinoid receptors, while they increase BP by a mechanism independent of these sites. The hypertensive effect appears to involve central sympathetic outflow.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Cannabinoides/farmacología , Receptor Cannabinoide CB1/agonistas , Animales , Cannabis , Dronabinol/farmacología , Indoles/farmacología , Masculino , Naftalenos/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Rimonabant , Especias
8.
Neuropsychopharmacology ; 42(8): 1619-1629, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28139681

RESUMEN

The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.


Asunto(s)
Ácido Quinurénico/metabolismo , Nicotina/farmacología , Refuerzo en Psicología , Sulfonamidas/farmacología , Tiazoles/farmacología , Animales , Cocaína/administración & dosificación , Cocaína/farmacología , Dopamina/metabolismo , Isoxazoles/farmacología , Masculino , Nicotina/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Ratas , Recurrencia , Saimiri , Prevención Secundaria , Autoadministración , Sulfonamidas/antagonistas & inhibidores , Tiazoles/antagonistas & inhibidores
9.
Br J Pharmacol ; 173(24): 3492-3501, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27714779

RESUMEN

BACKGROUND AND PURPOSE: 3,4-Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone with stimulatory cardiovascular effects that can lead to serious medical complications. Here, we examined the pharmacological mechanisms underlying these cardiovascular actions of MDPV in conscious rats. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats had telemetry transmitters surgically implanted for the measurement of BP and heart rate (HR). On test days, rats were placed individually in standard isolation cubicles. Following drug treatment, cardiovascular parameters were monitored for 3 h sessions. KEY RESULTS: Racemic MDPV (0.3-3.0 mg·kg-1 ) increased BP and HR in a dose-dependent manner. The S(+) enantiomer (0.3-3.0 mg·kg-1 ) of MDPV produced similar effects, while the R(-) enantiomer (0.3-3.0 mg·kg-1 ) had no effects. Neither of the hydroxylated phase I metabolites of MDPV altered cardiovascular parameters significantly from baseline. Pretreatment with the ganglionic blocker chlorisondamine (1 and 3 mg·kg-1 ) antagonized the increases in BP and HR produced by 1 mg·kg-1 MDPV. The α1 -adrenoceptor antagonist prazosin (0.3 mg·kg-1 ) attenuated the increase in BP following MDPV, while the ß-adrenoceptor antagonists propranolol (1 mg·kg-1 ) and atenolol (1 and 3 mg·kg-1 ) attenuated the HR increases. CONCLUSIONS AND IMPLICATIONS: The S(+) enantiomer appeared to mediate the cardiovascular effects of MDPV, while the metabolites of MDPV did not alter BP or HR significantly; MDPV increased BP and HR through activation of central sympathetic outflow. Mixed-action α/ß-adrenoceptor antagonists may be useful as treatments in counteracting the adverse cardiovascular effects of MDPV.


Asunto(s)
Benzodioxoles/farmacología , Sistema Cardiovascular/efectos de los fármacos , Pirrolidinas/farmacología , Animales , Benzodioxoles/administración & dosificación , Sistema Cardiovascular/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Pirrolidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Cathinona Sintética
10.
Psychopharmacology (Berl) ; 233(10): 1879-88, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26558620

RESUMEN

RATIONALE: Manipulations of the endocannabinoid system could potentially produce therapeutic effects with minimal risk of adverse cannabis-like side effects. Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of the cannabinoid-receptor agonist, anandamide, and show promise for treating a wide range of disorders. However, their effects on learning and memory have not been fully characterized. OBJECTIVES: We determined the effects of five structurally different FAAH inhibitors in an animal model of working memory known to be sensitive to impairment by delta-9 tetrahydrocannabinol (THC). METHODS: A delayed nonmatching-to-position procedure was used in rats. Illuminated nosepoke holes were used to provide sample cues (left versus right) and record responses (correct versus incorrect) after delays ranging from 0 to 28 s. Various test drugs were given acutely up to two times per week before daily sessions. RESULTS: One FAAH inhibitor, AM3506 (3 mg/kg), decreased accuracy in the memory task. Four other FAAH inhibitors (URB597, URB694, PF-04457845, and ARN14633) and a monoacylglycerol lipase inhibitor (JZL184, which blocks the degradation of the endocannabinoid 2-arachidonoylglycerol) had no effect. Testing of AM3506 in combination with antagonists for receptors known to be affected by anandamide and other fatty acid amides indicated that the impairment induced by AM3506 was mediated by cannabinoid CB1 receptors, and not by alpha-type peroxisome proliferator-activated receptors (PPAR-alpha) or vanilloid transient receptor potential cation channels (TRPV1). CONCLUSIONS: FAAH inhibitors differ with respect to their potential for memory impairment, abuse liability, and probably other cannabis-like effects, and they should be evaluated individually for specific therapeutic and adverse effects.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Memoria a Corto Plazo/efectos de los fármacos , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Masculino , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo
11.
Psychopharmacology (Berl) ; 233(10): 1981-90, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26319160

RESUMEN

RATIONALE: 3,4-Methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) are synthetic drugs found in so-called "bath salts" products. Both drugs exert their effects by interacting with monoamine transporter proteins. MDPV is a potent uptake blocker at transporters for dopamine and norepinephrine while methylone is a non-selective releaser at transporters for dopamine, norepinephrine, and serotonin (5-HT). OBJECTIVES: We hypothesized that prominent 5-HT-releasing actions of methylone would render this drug less reinforcing than MDPV. METHODS: To test this hypothesis, we compared behavioral effects of MDPV and methylone using intravenous (i.v.) self-administration on a fixed-ratio 1 schedule in male rats. Additionally, neurochemical effects of the drugs were examined using in vivo microdialysis in nucleus accumbens, in a separate cohort of rats. RESULTS: MDPV self-administration (0.03 mg/kg/inj) was acquired rapidly and reached 40 infusions per session, similar to the effects of cocaine (0.5 mg/kg/inj), by the end of training. In contrast, methylone self-administration (0.3 and 0.5 mg/kg/inj) was acquired slowly, and response rates only reached 20 infusions per session by the end of training. In dose substitution studies, MDPV and cocaine displayed typical inverted U-shaped dose-effect functions, but methylone did not. In vivo microdialysis revealed that i.v. MDPV (0.1 and 0.3 mg/kg) increased extracellular dopamine while i.v. methylone (1 and 3 mg/kg) increased extracellular dopamine and 5-HT. CONCLUSIONS: Our findings support the hypothesis that elevations in extracellular 5-HT in the brain can dampen positive reinforcing effects of cathinone-type drugs. Nevertheless, MDPV and methylone are both self-administered by rats, suggesting these drugs possess significant abuse liability in humans.


Asunto(s)
Benzodioxoles/farmacología , Metanfetamina/análogos & derivados , Pirrolidinas/farmacología , Refuerzo en Psicología , Animales , Cocaína/farmacología , Dopamina/metabolismo , Masculino , Metanfetamina/farmacología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Autoadministración , Cathinona Sintética
12.
Addict Biol ; 20(5): 913-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25582886

RESUMEN

Recent studies have shown that when given a mutually exclusive choice between cocaine and palatable foods, most rats prefer the non-drug rewards over cocaine. Here, we used a discrete choice procedure to assess whether palatable food preference generalizes to rats with a history of limited (3 hours/day) or extended (6 or 9 hours/day) access to methamphetamine self-administration. On different daily sessions, we trained rats to lever-press for either methamphetamine (0.1-0.2 mg/kg/infusion) or palatable food (five pellets per reward delivery) for several weeks; regular food was freely available. We then assessed food-methamphetamine preference either during training, after priming methamphetamine injections (0.5-1.0 mg/kg), following a satiety manipulation (palatable food exposure in the home cage) or after 21 days of withdrawal from methamphetamine. We also assessed progressive ratio responding for palatable food and methamphetamine. We found that independent of the daily drug access conditions and the withdrawal period, the rats strongly preferred the palatable food over methamphetamine, even when they were given free access to the palatable food in the home cage. Intake of methamphetamine and progressive ratio responding for the drug, both of which increased or escalated over time, did not predict preference in the discrete choice test. Results demonstrate that most rats strongly prefer palatable food pellets over intravenous methamphetamine, confirming previous studies using discrete choice procedures with intravenous cocaine. Results also demonstrate that escalation of drug self-administration, a popular model of compulsive drug use, is not associated with a cardinal feature of human addiction of reduced behavioral responding for non-drug rewards.


Asunto(s)
Conducta Animal/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Metanfetamina/farmacología , Animales , Conducta Adictiva , Estimulantes del Sistema Nervioso Central/administración & dosificación , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Operante , Modelos Animales de Enfermedad , Masculino , Metanfetamina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Recompensa , Autoadministración
13.
Br J Pharmacol ; 171(1): 83-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24328722

RESUMEN

BACKGROUND AND PURPOSE: The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. EXPERIMENTAL APPROACH: Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. KEY RESULTS: MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the ß-adrenoceptor antagonist propranolol. CONCLUSIONS AND IMPLICATIONS: Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Alucinógenos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , 3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Estado de Conciencia , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/metabolismo , Desoxiepinefrina/farmacología , Dopamina/análogos & derivados , Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Alucinógenos/metabolismo , Masculino , Fase I de la Desintoxicación Metabólica , Metanfetamina/análogos & derivados , Metanfetamina/metabolismo , Metanfetamina/farmacología , Actividad Motora/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/metabolismo , Ratas , Ratas Sprague-Dawley , Telemetría , Factores de Tiempo
14.
Neuropsychopharmacology ; 38(4): 552-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23072836

RESUMEN

The abuse of psychoactive 'bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [(3)H]dopamine (IC(50)=4.1 nM) and [(3)H]norepinephrine (IC(50)=26 nM) with high potency but has weak effects on uptake of [(3)H]serotonin (IC(50)=3349 nM). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1-0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of 'bath salts' preparations.


Asunto(s)
Benzodioxoles/farmacología , Cocaína/farmacología , Drogas de Diseño/farmacología , Psicotrópicos/farmacología , Pirrolidinas/farmacología , Animales , Benzodioxoles/química , Cocaína/química , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Drogas de Diseño/química , Dopamina/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Técnicas de Cultivo de Órganos , Psicotrópicos/química , Pirrolidinas/química , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sales (Química)/química , Sales (Química)/farmacología , Cathinona Sintética
15.
Br J Pharmacol ; 165(8): 2529-38, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21699509

RESUMEN

BACKGROUND AND PURPOSE: Cannabis and caffeine are two of the most widely used psychoactive substances. Δ(9) -Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, induces deficits in short-term memory. Caffeine, a non-selective adenosine receptor antagonist, attenuates some memory deficits, but there have been few studies addressing the effects of caffeine and THC in combination. Here, we evaluate the effects of these drugs using a rodent model of working memory. EXPERIMENTAL APPROACH: Rats were given THC (0, 1 and 3 mg·kg(-1) , i.p.) along with caffeine (0, 1, 3 and 10 mg·kg(-1) , i.p.), the selective adenosine A(1) -receptor antagonist CPT (0, 3 and 10 mg·kg(-1) ) or the selective adenosine A(2A) -receptor antagonist SCH58261 (0 and 5 mg·kg(-1) ) and were tested with a delayed non-matching-to-position procedure in which behaviour during the delay was automatically recorded as a model of memory rehearsal. KEY RESULTS: THC alone produced memory deficits at 3 mg·kg(-1) . The initial exposure to caffeine (10 mg·kg(-1) ) disrupted the established pattern of rehearsal-like behaviour, but tolerance developed rapidly to this effect. CPT and SCH58261 alone had no significant effects on rehearsal or memory. When a subthreshold dose of THC (1 mg·kg(-1) ) was combined with caffeine (10 mg·kg(-1) ) or CPT (10 mg·kg(-1) ), memory performance was significantly impaired, even though performance of the rehearsal-like pattern was not significantly altered. CONCLUSION AND IMPLICATIONS: Caffeine did not counteract memory deficits induced by THC but actually exacerbated them. These results are consistent with recent findings that adenosine A(1) receptors modulate cannabinoid signalling in the hippocampus. LINKED ARTICLES: This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.


Asunto(s)
Antagonistas del Receptor de Adenosina A1/farmacología , Cafeína/farmacología , Dronabinol/farmacología , Memoria a Corto Plazo/efectos de los fármacos , Teofilina/análogos & derivados , Animales , Sinergismo Farmacológico , Masculino , Ratas , Ratas Long-Evans , Receptor de Adenosina A1/fisiología , Teofilina/farmacología
16.
Pharmacol Biochem Behav ; 99(3): 301-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21600912

RESUMEN

In general, faster infusions of cocaine are more likely to support behavior related to abuse than are slower infusions. However, some studies of cocaine self-administration in rats have failed to support this finding, possibly because the effect was masked by other factors. One such factor may be the pairing of a stimulus with the infusion, a procedure that is known to facilitate acquisition of drug self-administration. We compared fast and slow infusions by allowing groups of rats to acquire cocaine self-administration at a dose of 1mg/kg/infusion, delivered over different durations (1.8 or 100 s). Two groups were trained with either short or long infusions paired with a visual stimulus change (lights off), and two other groups were trained with short or long durations but with no stimulus change. Both groups trained with a paired stimulus acquired cocaine self-administration. With no stimulus change, the rats trained with the 1.8-s infusion acquired cocaine self-administration at a rate comparable to the two groups that were trained with a paired stimulus. However, most rats in the group trained with the 100-s infusion that was not accompanied by a stimulus change failed to acquire cocaine self-administration. The stimulus itself did not support responding. These results indicate that infusing a given dose of cocaine over a longer duration reduces its ability to support self-administration, but drug-paired stimuli can partially mask this effect by enhancing the effectiveness of slow infusions.


Asunto(s)
Cocaína/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Esquema de Refuerzo , Animales , Condicionamiento Operante/fisiología , Infusiones Intravenosas , Masculino , Ratas , Ratas Sprague-Dawley , Autoadministración , Factores de Tiempo
17.
Psychopharmacology (Berl) ; 214(2): 495-504, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21086118

RESUMEN

RATIONALE: Delayed matching-to-position and nonmatching-to-position procedures are widely used to model working memory in rodents. Mediating behavior-which enhances performance but is not explicitly required by the task-is generally considered an obstacle to the measurement of memory, but often occurs despite attempts to prevent it. The ubiquitous nature of mediating behavior suggests it might be analogous to rehearsal, an important component of learning and memory in humans. OBJECTIVES: The aim was to study an easily recordable, rehearsal-like mediating response in rats under baseline conditions and after treatment with amnestic drugs [scopolamine (0.1-0.3 mg/kg) and delta-9-tetrahydrocannabinol (THC; 1-5.6 mg/kg)]. METHODS: Lighted nosepoke holes were used to present position cues and record delayed matching or nonmatching responses. Performance of a distractor task was required to prevent simply waiting at the correct choice, but the nosepoke holes were left accessible during the delay. RESULTS: Each rat trained with the nonmatching task exhibited one of two mediating "strategies" that increased the odds of a correct choice: responding in the to-be-correct hole during the delay or responding in the opposite hole during the delay. Rats trained with the matching task all showed the former strategy. Treatment with scopolamine disrupted performance of the mediating response. Scopolamine and THC both decreased the effectiveness of the mediating response, increasing errors even on trials when the "appropriate" mediating behavior did occur. CONCLUSIONS: The procedures and data analysis approach used here provide an objective, automated means of measuring mediating behavior, which might be useful as an animal model of memory rehearsal.


Asunto(s)
Conducta Animal , Señales (Psicología) , Memoria , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Masculino , Memoria/efectos de los fármacos , Oportunidad Relativa , Psicotrópicos/farmacología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Tiempo de Reacción , Escopolamina/farmacología , Factores de Tiempo
18.
Pharmacol Biochem Behav ; 93(4): 375-81, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19464316

RESUMEN

Many studies of drug self-administration in primates have shown that faster infusions of a drug are more reinforcing than slower infusions. Similar effects have not been shown in rats. We assessed the influence of delivery rate by allowing rats to choose between the same doses of intravenous cocaine delivered over two different infusion speeds. Rats were trained in chambers containing two nose-poke response devices. In Experiment 1, responses in one nose-poke delivered 0.3 mg/kg/injection of cocaine over 10 s, and responses in the other delivered the same dose over 100 s. In Experiment 2, the same procedure was used, but with 1.0 mg/kg/injection dose delivered over 1.7 versus 100 s. During acquisition, most rats preferred the faster infusion. When the delivery rates associated with the nose pokes were reversed, rats trained with 0.3 mg/kg/injection failed to switch nose-poke preference, but half the rats trained with 1.0 mg/kg/injection did switch. In Experiment 3, the choice was between 1 mg/kg cocaine delivered over 1.7 s and no reinforcement. Here, rats quickly learned to respond in the nose-poke associated with cocaine and quickly switched their choice during reversal. In Experiment 4, two groups of rats were allowed to choose between food delivered with a delay of 1 versus 5 s or 1 versus 10 s, respectively. Rats preferred the shorter delay during initial training. In reversal, some rats in the 1 vs 5 s group failed to reverse, while all the rats in the 1 vs 10 s group reversed. These results show that faster infusions of cocaine are clearly more reinforcing during acquisition, but delivery rate may not be as important to the maintenance of self-administration once it has been established. The results with food suggest that these findings represent general principles of behavior and are not unique to drug self-administration.


Asunto(s)
Trastornos Relacionados con Cocaína/psicología , Cocaína/administración & dosificación , Animales , Condicionamiento Operante/efectos de los fármacos , Infusiones Intravenosas , Masculino , Ratas , Ratas Sprague-Dawley , Refuerzo en Psicología , Aprendizaje Inverso/efectos de los fármacos , Autoadministración
19.
Pharmacol Biochem Behav ; 92(3): 439-47, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19463257

RESUMEN

Drug self-administration typically occurs in a regular temporal pattern, with a consistent pause following each injection. We have proposed that this patterning results from differential reinforcement of post-injection pausing. In this view, even when every response produces an injection, some injections are not reinforcing because they occur when the level of drug effect is already maximal; consequently, drug reinforcement occurs on an intermittent schedule, and the interoceptive drug effect functions as a cue, indicating when another injection will be reinforcing. Previously, we emulated this situation with rats by using food reinforcement; each response was recorded as delivering a "virtual" injection, and a visual cue tracked the virtual drug level to indicate availability of reinforcement. This emulation schedule produced response patterns strikingly similar to actual drug self-administration. In the present study, the emulation schedule was modified to determine whether reinforcement of pausing is sufficient to produce these patterns, or whether a cue is necessary. Without a cue, response patterns were irregular and virtual drug intake was escalated. These results suggest that a failure of interoceptive cues to control pausing might contribute to the dysregulated drug intake that is associated with addiction.


Asunto(s)
Motivación , Autoadministración , Animales , Masculino , Ratas , Ratas Sprague-Dawley
20.
Psychopharmacology (Berl) ; 196(3): 441-50, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17957355

RESUMEN

RATIONALE: Patterns of drug self-administration are often highly regular, with a consistent pause after each self-injection. This pausing might occur because the animal has learned that additional injections are not reinforcing once the drug effect has reached a certain level, possibly due to the reinforcement system reaching full capacity. Thus, interoceptive effects of the drug might function as a discriminative stimulus, signaling when additional drug will be reinforcing and when it will not. OBJECTIVE: This hypothetical stimulus control aspect of drug self-administration was emulated using a schedule of food reinforcement. MATERIALS AND METHODS: Rats' nose-poke responses produced food only when a cue light was present. No drug was administered at any time. However, the state of the light stimulus was determined by calculating what the whole-body drug level would have been if each response in the session had produced a drug injection. The light was only presented while this virtual drug level was below a specific threshold. A range of doses of cocaine and remifentanil were emulated using parameters based on previous self-administration experiments. RESULTS: Response patterns were highly regular, dose-dependent, and remarkably similar to actual drug self-administration. CONCLUSION: This similarity suggests that the emulation schedule may provide a reasonable model of the contingencies inherent in drug reinforcement. Thus, these results support a stimulus control account of regulated drug intake in which rats learn to discriminate when the level of drug effect has fallen to a point where another self-injection will be reinforcing.


Asunto(s)
Condicionamiento Operante , Aprendizaje Discriminativo , Recompensa , Analgésicos Opioides/administración & dosificación , Animales , Cocaína/administración & dosificación , Señales (Psicología) , Inhibidores de Captación de Dopamina/administración & dosificación , Relación Dosis-Respuesta a Droga , Luz , Masculino , Piperidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Remifentanilo , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA