Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 25(1): 103621, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35024577

RESUMEN

Borna disease viruses (BoDV) have recently emerged as zoonotic neurotropic pathogens. These persistent RNA viruses assemble nuclear replication centers (vSPOT) in close interaction with the host chromatin. However, the topology of this interaction and its consequences on neuronal function remain unexplored. In neurons, DNA double-strand breaks (DSB) have been identified as novel epigenetic mechanisms regulating neurotransmission and cognition. Activity-dependent DSB contribute critically to neuronal plasticity processes, which could be impaired upon infection. Here, we show that BoDV-1 infection, or the singled-out expression of viral Nucleoprotein and Phosphoprotein, increases neuronal DSB levels. Of interest, inducing DSB promoted the recruitment anew of vSPOT colocalized with DSB and increased viral RNA replication. BoDV-1 persistence decreased neuronal activity and response to stimulation by dampening the surface expression of glutamate receptors. Taken together, our results propose an original mechanistic cross talk between persistence of an RNA virus and neuronal function, through the control of DSB levels.

2.
Sci Rep ; 11(1): 17705, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489498

RESUMEN

Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Dinámicas Mitocondriales/fisiología , Neuronas/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Rotenona/farmacología
4.
Proc Natl Acad Sci U S A ; 115(7): 1611-1616, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378968

RESUMEN

The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.


Asunto(s)
Enfermedad de Borna/virología , Virus de la Enfermedad de Borna/fisiología , Trastornos del Conocimiento/etiología , Hipocampo/virología , Memoria a Largo Plazo/fisiología , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Enfermedad de Borna/metabolismo , Enfermedad de Borna/patología , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/virología , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Mutación , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Fosfoproteínas/genética , Fosforilación , Proteína Quinasa C/genética , Proteínas Estructurales Virales/genética
5.
Arthritis Res Ther ; 19(1): 124, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587618

RESUMEN

BACKGROUND: Increasing evidences indicate that an unbalance between tryptases and their endogenous inhibitors, leading to an increased proteolytic activity, is implicated in the pathophysiology of rheumatoid arthritis. The aim of the present study was to evaluate the impact of tryptase inhibition on experimental arthritis. METHODS: Analysis of gene expression and regulation in the mouse knee joint was performed by RT-qPCR and in situ hybridization. Arthritis was induced in male C57BL/6 mice with mBSA/IL-1ß. Tryptase was inhibited by two approaches: a lentivirus-mediated heterologous expression of the human endogenous tryptase inhibitor, sperm-associated antigen 11B isoform C (hSPAG11B/C), or a chronic treatment with the synthetic tryptase inhibitor APC366. Several inflammatory parameters were evaluated, such as oedema formation, histopathology, production of IL-1ß, -6, -17A and CXCL1/KC, myeloperoxidase and tryptase-like activities. RESULTS: Spag11c was constitutively expressed in chondrocytes and cells from the synovial membrane in mice, but its expression did not change 7 days after the induction of arthritis, while tryptase expression and activity were upregulated. The intra-articular transduction of animals with the lentivirus phSPAG11B/C or the treatment with APC366 inhibited the increase of tryptase-like activity, the late phase of oedema formation, the production of IL-6 and CXCL1/KC. In contrast, neutrophil infiltration, degeneration of hyaline cartilage and erosion of subchondral bone were not affected. CONCLUSIONS: Tryptase inhibition was effective in inhibiting some inflammatory parameters associated to mBSA/IL-1ß-induced arthritis, notably late phase oedema formation and IL-6 production, but not neutrophil infiltration and joint degeneration. These results suggest that the therapeutic application of tryptase inhibitors to rheumatoid arthritis would be restrained to palliative care, but not as disease-modifying drugs. Finally, this study highlighted lentivirus-based gene delivery as an instrumental tool to study the relevance of target genes in synovial joint physiology and disease.


Asunto(s)
Técnicas de Transferencia de Gen , Inflamación/metabolismo , Articulación de la Rodilla/metabolismo , Triptasas/metabolismo , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Artritis Experimental/genética , Artritis Experimental/metabolismo , Artritis Experimental/terapia , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/terapia , Condrocitos/metabolismo , Citocinas/metabolismo , Dipéptidos/farmacología , Células HEK293 , Humanos , Inflamación/genética , Inflamación/terapia , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/patología , Lentivirus/genética , Masculino , Ratones Endogámicos C57BL , Membrana Sinovial/metabolismo , Triptasas/antagonistas & inhibidores , Triptasas/genética
6.
J Gen Virol ; 97(12): 3215-3224, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27902378

RESUMEN

Long-range axonal retrograde transport is a key mechanism for the cellular dissemination of neuroinvasive viruses, such as Borna disease virus (BDV), for which entry and egress sites are usually distant from the nucleus, where viral replication takes place. Although BDV is known to disseminate very efficiently in neurons, both in vivo and in primary cultures, the modalities of its axonal transport are still poorly characterized. In this work, we combined different methodological approaches, such as confocal microscopy and biochemical purification of endosomes, to study BDV retrograde transport. We demonstrate that BDV ribonucleoparticles (composed of the viral genomic RNA, nucleoprotein and phosphoprotein), as well as the matrix protein, are transported towards the nucleus into endocytic carriers. These specialized organelles, called signalling endosomes, are notably used for the retrograde transport of neurotrophins and activated growth factor receptors. Signalling endosomes have a neutral luminal pH and thereby offer protection against degradation during long-range transport. This particularity could allow the viral particles to be delivered intact to the cell body of neurons, avoiding their premature release in the cytoplasm.


Asunto(s)
Enfermedad de Borna/virología , Virus de la Enfermedad de Borna/metabolismo , Endosomas/virología , Neuronas/virología , Animales , Enfermedad de Borna/metabolismo , Virus de la Enfermedad de Borna/genética , Núcleo Celular/metabolismo , Núcleo Celular/virología , Endosomas/metabolismo , Neuronas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética , Virión/metabolismo
7.
FASEB J ; 30(4): 1523-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26700735

RESUMEN

To favor their replication, viruses express proteins that target diverse mammalian cellular pathways. Due to the limited size of many viral genomes, such proteins are endowed with multiple functions, which require targeting to different subcellular compartments. One salient example is the X protein of Borna disease virus, which is expressed both at the mitochondria and in the nucleus. Moreover, we recently demonstrated that mitochondrial X protein is neuroprotective. In this study, we sought to examine the mechanisms whereby the X protein transits between subcellular compartments and to define its localization signals, to enhance its mitochondrial accumulation and thus, potentially, its neuroprotective activity. We transfected plasmids expressing fusion proteins bearing different domains of X fused to enhanced green fluorescent protein (eGFP) and compared their subcellular localization to that of eGFP. We observed that the 5-16 domain of X was responsible for both nuclear export and mitochondrial targeting and identified critical residues for mitochondrial localization. We next took advantage of these findings and constructed mutant X proteins that were targeted only to the mitochondria. Such mutants exhibited enhanced neuroprotective properties in compartmented cultures of neurons grown in microfluidic chambers, thereby confirming the parallel between mitochondrial accumulation of the X protein and its neuroprotective potential.-Ferré C. A., Davezac, N., Thouard, A., Peyrin, J. M., Belenguer, P., Miquel, M.-C., Gonzalez-Dunia, D., Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential.


Asunto(s)
Virus de la Enfermedad de Borna/genética , Mitocondrias/metabolismo , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Western Blotting , Virus de la Enfermedad de Borna/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Señales de Localización Nuclear/genética , Homología de Secuencia de Aminoácido , Proteínas Virales/metabolismo
8.
J Virol ; 89(11): 5996-6008, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25810554

RESUMEN

UNLABELLED: Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. IMPORTANCE: Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only RNA virus known to durably persist in the nucleus of infected cells, notably neurons, might employ a similar mechanism. In this study, we uncovered a novel modality of virus-cell interaction in which BDV phosphoprotein inhibits cellular histone acetylation by interfering with histone acetyltransferase activities. Manipulation of cellular histone acetylation is accompanied by a modulation of viral replication, revealing a perfect adaptation of this "ancient" virus to its host that may favor neuronal persistence and limit cellular damage.


Asunto(s)
Virus de la Enfermedad de Borna/fisiología , Epigénesis Genética , Interacciones Huésped-Patógeno , Neuronas/virología , Fosfoproteínas/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Acetilación , Animales , Células Cultivadas , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Ratas Sprague-Dawley
9.
Nat Commun ; 5: 5181, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25333748

RESUMEN

Mitochondrial dysfunction is a common feature of many neurodegenerative disorders, notably Parkinson's disease. Consequently, agents that protect mitochondria have strong therapeutic potential. Here, we sought to divert the natural strategy used by Borna disease virus (BDV) to replicate in neurons without causing cell death. We show that the BDV X protein has strong axoprotective properties, thereby protecting neurons from degeneration both in tissue culture and in an animal model of Parkinson's disease, even when expressed alone outside of the viral context. We also show that intranasal administration of a cell-permeable peptide derived from the X protein is neuroprotective. We establish that both the X protein and the X-derived peptide act by buffering mitochondrial damage and inducing enhanced mitochondrial filamentation. Our results open the way to novel therapies for neurodegenerative diseases by targeting mitochondrial dynamics and thus preventing the earliest steps of neurodegenerative processes in axons.


Asunto(s)
Mitocondrias/patología , Enfermedades Neurodegenerativas/prevención & control , Enfermedad de Parkinson/prevención & control , Péptidos/química , Proteínas no Estructurales Virales/química , Animales , Axones/metabolismo , Axones/fisiología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Microfluídica , Microscopía Confocal , Microscopía Fluorescente , Enfermedades Neurodegenerativas/virología , Neuronas/metabolismo , Enfermedad de Parkinson/virología , Fosforilación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Rotenona/química
10.
Virology ; 462-463: 273-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24999840

RESUMEN

The Hepatitis B virus Precore protein, present in the secretory pathway as the HBeAg precursor, can associate in the cytoplasm with the Core protein to form heterocapsids, likely to favor viral persistence. Core and Precore proteins share their primary sequence except for ten additional aminoacids at the N-terminus of Precore. To address the role of this propeptide sequence in the formation of Precore heterocapsids, we designed a Precore mutant in which the two propeptide tryptophans are replaced by glycines. This mutant retains the properties of the wild-type Precore, notably cell trafficking and ability to interact with Core. However, it is not incorporated into heterocapsids and forms stable dimers distinct from the labile HBe dimers and the presumably Core-like dimers assembled into heterocapsids. Our data highlights the essential role of Precore׳s propeptide in switching between different conformations for different functions and pinpoint the propeptide Tryptophan residues as central in these properties.


Asunto(s)
Secuencia Conservada , Antígenos del Núcleo de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Multimerización de Proteína , Precursores de Proteínas/metabolismo , Sustitución de Aminoácidos , Línea Celular , Antígenos del Núcleo de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Precursores de Proteínas/genética
11.
Gene ; 412(1-2): 95-101, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18313865

RESUMEN

In Escherichia coli the rare codons AGG, AGA and CGA are reported to have a detrimental effect on protein synthesis, especially during the expression of heterologous proteins. In the present work, we have studied the impact of successive clusters of these rare codons on the accuracy of mRNA translation in E. coli. For this purpose, we have analyzed the expression of an mRNA which contains in its 3' region a triplet and a tandem of AGA codons. This mRNA is derived from the human hepatitis B virus (HBV) preC gene. Both in eukaryotic cells and in eukaryotic cell-free translation system, this mRNA, directs the synthesis of a single 25 kDa protein. However, in a conventional E. coli strain BL 21 (DE3), transformed with a plasmid expressing this protein the synthesis of four polypeptides ranging from 30 to 21.5 kDa can be observed. Using different approaches, notably expression of i) precore mutated proteins or ii) chimeric proteins containing HA- and Myc-tags downstream of the AGA clusters (respectively in the -1 or +1 frame), we have found that when the ribosome encounters the AGA clusters, it can then resume the translation in both +1 and -1 frames. This result is in agreement with the model proposed recently by Baranov et al. (Baranov, P.V., Gesteland, R.F., Atkins, J.F., 2004. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA 10, 221-230), thus confirming that AGA/AGG codons can serve as sites for -1 frameshifting events. Only +1 frameshifting was suggested previously to occur at the AGA/AGG clusters.


Asunto(s)
Escherichia coli/genética , Secuencia de Bases , Codón/genética , Cartilla de ADN/genética , ADN Bacteriano/genética , Escherichia coli/metabolismo , Sistema de Lectura Ribosómico , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Plásmidos/genética , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...