Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Fly (Austin) ; 16(1): 105-110, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35094652

RESUMEN

The Drosophila tracheal system consists of a widespread tubular network that provides respiratory functions for the animal. Its development, from ten pairs of placodes in the embryo to the final stereotypical branched structure in the adult, has been extensively studied by many labs as a model system for understanding tubular epithelial morphogenesis. Throughout these studies, a breathless (btl)-GAL4 driver has provided an invaluable tool to either mark tracheal cells during development or to manipulate gene expression in this tissue. A distinct shortcoming of this approach, however, is that btl-GAL4 cannot be used to specifically visualize tracheal cells in the presence of other GAL4 drivers or other UAS constructs, restricting its utility. Here we describe a direct-drive btl-nGFP reporter that can be used as a specific marker of tracheal cells throughout development in combination with any GAL4 driver and/or UAS construct. This reporter line should facilitate the use of Drosophila as a model system for studies of tracheal development and tubular morphogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Animales Modificados Genéticamente , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Organogénesis , Tráquea/metabolismo
3.
Dev Biol ; 481: 104-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648816

RESUMEN

Pulses of the steroid hormone ecdysone act through transcriptional cascades to direct the major developmental transitions during the Drosophila life cycle. These include the prepupal ecdysone pulse, which occurs 10 â€‹hours after pupariation and triggers the onset of adult morphogenesis and larval tissue destruction. E93 encodes a transcription factor that is specifically induced by the prepupal pulse of ecdysone, supporting a model proposed by earlier work that it specifies the onset of adult development. Although a number of studies have addressed these functions for E93, little is known about its roles in the salivary gland where the E93 locus was originally identified. Here we show that E93 is required for development through late pupal stages, with mutants displaying defects in adult differentiation and no detectable effect on the destruction of larval salivary glands. RNA-seq analysis demonstrates that E93 regulates genes involved in development and morphogenesis in the salivary glands, but has little effect on cell death gene expression. We also show that E93 is required to direct the proper timing of ecdysone-regulated gene expression in salivary glands, and that it suppresses earlier transcriptional programs that occur during larval and prepupal stages. These studies support the model that the stage-specific induction of E93 in late prepupae provides a critical signal that defines the end of larval development and the onset of adult differentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Ecdisona/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Metamorfosis Biológica/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Ecdisona/metabolismo , Larva , Factores de Transcripción/genética
4.
Dev Biol ; 479: 51-60, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331899

RESUMEN

Successful reproduction is dependent on the transfer of male seminal proteins to females upon mating. These proteins arise from secretory tissues in the male reproductive tract, including the prostate and seminal vesicles in mammals and the accessory gland in insects. Although detailed functional studies have provided important insights into the mechanisms by which accessory gland proteins support reproduction, much less is known about the molecular mechanisms that regulate their expression within this tissue. Here we show that the Drosophila HR39 nuclear receptor is required for the proper expression of most genes that encode male accessory gland proteins. Consistent with this role, HR39 mutant males are infertile. In addition, tissue-specific RNAi and genetic rescue experiments indicate that HR39 acts within the accessory glands to regulate gene expression and male fertility. These results provide new directions for characterizing the mammalian orthologs of HR39, the SF-1 and LRH-1 nuclear receptors, both of which are required for glandular secretions and reproduction. In addition, our studies provide a molecular mechanism to explain how the accessory glands can maintain the abundant levels of seminal fluid production required to support fertility.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Infertilidad Masculina/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fertilidad/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Genitales Masculinos/metabolismo , Infertilidad Masculina/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Próstata/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Reproducción/genética
5.
Dev Dyn ; 250(5): 640-651, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33368768

RESUMEN

BACKGROUND: Lipid levels are maintained by balancing lipid uptake, synthesis, and mobilization. Although many studies have focused on the control of lipid synthesis and mobilization, less is known about the regulation of lipid digestion and uptake. RESULTS: Here we show that the Drosophila E78A nuclear receptor plays a central role in intestinal lipid homeostasis through regulation of the CG17192 digestive lipase. E78A mutant adults fail to maintain proper systemic lipid levels following eclosion, with this effect largely restricted to the intestine. Transcriptional profiling by RNA-seq revealed a candidate gene for mediating this effect, encoding the predicted adult intestinal lipase CG17192. Intestine-specific disruption of CG17192 results in reduced lipid levels similar to that seen in E78A mutants. In addition, dietary supplementation with free fatty acids, or intestine-specific expression of either E78A or CG17192, is sufficient to restore lipid levels in E78A mutant adults. CONCLUSION: These studies support the model that E78A is a central regulator of adult lipid homeostasis through its effects on CG17192 expression and lipid digestion. This work also provides new insights into the control of intestinal lipid uptake and demonstrate that nuclear receptors can play an important role in these pathways.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Metabolismo de los Lípidos , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Secuencia de Bases , Grasas de la Dieta , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica , Homeostasis , Intestinos/enzimología , Lipasa/metabolismo , Masculino , Receptores Citoplasmáticos y Nucleares/genética
6.
Genes Dev ; 34(9-10): 701-714, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165409

RESUMEN

Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Glucólisis/genética , Lipogénesis/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transcripción Genética/genética , Animales , Drosophila/crecimiento & desarrollo , Mutación , Pupa , Transcriptoma
7.
Cell Metab ; 31(2): 284-300.e7, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31813825

RESUMEN

Although metabolic adaptations have been demonstrated to be essential for tumor cell proliferation, the metabolic underpinnings of tumor initiation are poorly understood. We found that the earliest stages of colorectal cancer (CRC) initiation are marked by a glycolytic metabolic signature, including downregulation of the mitochondrial pyruvate carrier (MPC), which couples glycolysis and glucose oxidation through mitochondrial pyruvate import. Genetic studies in Drosophila suggest that this downregulation is required because hyperplasia caused by loss of the Apc or Notch tumor suppressors in intestinal stem cells can be completely blocked by MPC overexpression. Moreover, in two distinct CRC mouse models, loss of Mpc1 prior to a tumorigenic stimulus doubled the frequency of adenoma formation and produced higher grade tumors. MPC loss was associated with a glycolytic metabolic phenotype and increased expression of stem cell markers. These data suggest that changes in cellular pyruvate metabolism are necessary and sufficient to promote cancer initiation.


Asunto(s)
Adenoma/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ácido Pirúvico/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Drosophila , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
8.
G3 (Bethesda) ; 9(11): 3623-3630, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488514

RESUMEN

Multiple signaling pathways in the adult Drosophila enterocyte sense cellular damage or stress and signal to intestinal stem cells (ISCs) to undergo proliferation and differentiation, thereby maintaining intestinal homeostasis. Here we show that misregulation of mitochondrial pyruvate metabolism in enterocytes can stimulate ISC proliferation and differentiation. Our studies focus on the Mitochondrial Pyruvate Carrier (MPC), which is an evolutionarily-conserved protein complex that resides in the inner mitochondrial membrane and transports cytoplasmic pyruvate into the mitochondrial matrix. Loss of MPC function in enterocytes induces Unpaired cytokine expression, which activates the JAK/STAT pathway in ISCs, promoting their proliferation. Upd3 and JNK signaling are required in enterocytes for ISC proliferation, indicating that this reflects a canonical non-cell autonomous damage response. Disruption of lactate dehydrogenase in enterocytes has no effect on ISC proliferation but it suppresses the proliferative response to a loss of enterocyte MPC function, suggesting that lactate contributes to this pathway. These studies define an important role for cellular pyruvate metabolism in differentiated enterocytes to maintain stem cell proliferation rates.


Asunto(s)
Proliferación Celular , Drosophila/metabolismo , Enterocitos/metabolismo , Mitocondrias/metabolismo , Piruvatos/metabolismo , Células Madre/citología , Animales , Proteínas de Transporte de Anión/genética , Diferenciación Celular , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Intestinos/citología , Transportadores de Ácidos Monocarboxílicos/genética
9.
Dev Dyn ; 248(9): 762-770, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31175694

RESUMEN

BACKGROUND: The ADCK proteins are predicted mitochondrial kinases. Most studies of these proteins have focused on the Abc1/Coq8 subfamily, which contributes to Coenzyme Q biosynthesis. In contrast, little is known about ADCK1 despite its evolutionary conservation in yeast, Drosophila, Caenorhabditis elegans and mammals. RESULTS: We show that Drosophila ADCK1 mutants die as second instar larvae with double mouth hooks and tracheal breaks. Tissue-specific genetic rescue and RNAi studies show that ADCK1 is necessary and sufficient in the trachea for larval viability. In addition, tracheal-rescued ADCK1 mutant adults have reduced lifespan, are developmentally delayed, have reduced body size, and normal levels of basic metabolites. CONCLUSION: The larval lethality and double mouth hooks seen in ADCK1 mutants are often associated with reduced levels of the steroid hormone ecdysone, suggesting that this gene could contribute to controlling ecdysone levels or bioavailability. Similarly, the tracheal defects in these animals could arise from defects in intracellular lipid trafficking. These studies of ADCK1 provide a new context to define the physiological functions of this poorly understood member of the ADCK family of predicted mitochondrial proteins.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Proteínas Quinasas/fisiología , Anomalías Múltiples/genética , Animales , Proteínas de Drosophila/genética , Ecdisona , Larva/genética , Longevidad/genética , Proteínas Mitocondriales/genética , Proteínas Mutantes , Proteínas Quinasas/genética , Tráquea/crecimiento & desarrollo
10.
Dev Cell ; 48(2): 200-214.e6, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30554999

RESUMEN

Animals must adjust their metabolism as they progress through development in order to meet the needs of each stage in the life cycle. Here, we show that the dHNF4 nuclear receptor acts at the onset of Drosophila adulthood to direct an essential switch in lipid metabolism. Lipid stores are consumed shortly after metamorphosis but contribute little to energy metabolism. Rather, dHNF4 directs their conversion to very long chain fatty acids and hydrocarbons, which waterproof the animal to preserve fluid homeostasis. Similarly, HNF4α is required in mouse hepatocytes for the expression of fatty acid elongases that contribute to a waterproof epidermis, suggesting that this pathway is conserved through evolution. This developmental switch in Drosophila lipid metabolism promotes lifespan and desiccation resistance in adults and suppresses hallmarks of diabetes, including elevated glucose levels and intolerance to dietary sugars. These studies establish dHNF4 as a regulator of the adult metabolic state.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metabolismo Energético/fisiología , Factor Nuclear 4 del Hepatocito/metabolismo , Homeostasis/fisiología , Metabolismo de los Lípidos/fisiología , Animales , Drosophila melanogaster/crecimiento & desarrollo , Ácidos Grasos/metabolismo
11.
Dev Cell ; 47(1): 1-2, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30300586

RESUMEN

Nutrients play a central role in controlling the form and function of the intestinal epithelium. In this issue of Developmental Cell, Mattila et al. (2018) and Obniski et al. (2018) uncover important mechanisms by which Drosophila intestinal stem cells respond to dietary signals, linking nutrients to tissue homeostasis.


Asunto(s)
Drosophila , Intestinos , Animales , Proteínas de Drosophila , Homeostasis , Lípidos , Receptores Notch , Transducción de Señal
12.
Dev Dyn ; 247(2): 315-322, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29171103

RESUMEN

BACKGROUND: The Testicular Receptors 2 and 4 (TR2, TR4) comprise a small subfamily of orphan nuclear receptors. Genetic studies in mouse models have identified roles for TR4 in developmental progression, fertility, brain development, and metabolism, as well as genetic redundancy with TR2. Here we study the adult functions of the single Drosophila member of this subfamily, DHR78, with the goal of defining its ancestral functions in the absence of genetic redundancy. RESULTS: We show that DHR78 mutants have a shortened lifespan, reduced motility, and mated DHR78 mutant females display a reduced feeding rate. Transcriptional profiling reveals a major role for DHR78 in promoting the expression of genes that are expressed in the midgut, suggesting that it contributes to nutrient uptake. We also identify roles for DHR78 in maintaining the expression of genes in the ecdysone and Notch signaling pathways. CONCLUSIONS: This study provides a new context for linking the molecular activity of the TR orphan nuclear receptors with their complex roles in adult physiology and lifespan. Developmental Dynamics 247:315-322, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales , Drosophila , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Femenino , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica , Longevidad/genética , Masculino , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores Notch/metabolismo , Transducción de Señal/genética
13.
Nat Cell Biol ; 19(9): 1027-1036, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28812582

RESUMEN

Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells.


Asunto(s)
Proliferación Celular , Drosophila melanogaster/metabolismo , Glucólisis , Mucosa Intestinal/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Células Madre/metabolismo , Acrilatos/farmacología , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Genotipo , Humanos , Intestinos/citología , Intestinos/efectos de los fármacos , Ácido Láctico/metabolismo , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos , Fenotipo , Interferencia de ARN , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células Madre/efectos de los fármacos , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Transfección
14.
Mol Metab ; 6(7): 631-639, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28702320

RESUMEN

OBJECTIVE: A significant portion of the heritable risk for complex metabolic disorders cannot be attributed to classic Mendelian genetic factors. At least some of this missing heritability is thought to be due to the epigenetic influence of parental and grandparental metabolic state on offspring health. Previous work suggests that this transgenerational phenomenon is evolutionarily conserved in Drosophila. These studies, however, have all depended on dietary paradigms to alter parental metabolic state, which can have inconsistent heritable effects on the metabolism of offspring. METHODS: Here we use AKHR null alleles to induce obesity in the parental generation and then score both metabolic parameters and genome-wide transcriptional responses in AKHR heterozygote F1 progeny and genetically wild-type F2 progeny. RESULTS: Unexpectedly, we observe elevated glycogen levels and changes in gene expression in AKHR heterozygotes due to haploinsufficiency at this locus. We also show that genetic manipulation of parental metabolism using AKHR mutations results in significant physiological changes in F2 wild-type offspring of the grandpaternal/maternal lineage. CONCLUSIONS: Our results demonstrate that genetic manipulation of parental metabolism in Drosophila can have an effect on the health of F2 progeny, providing a non-dietary paradigm to better understand the mechanisms behind the transgenerational inheritance of metabolic state.


Asunto(s)
Impresión Genómica , Obesidad/genética , Animales , Drosophila , Proteínas de Drosophila/genética , Glucógeno/metabolismo , Haploinsuficiencia , Receptores de Glucagón/genética , Transcriptoma
15.
Genetics ; 206(3): 1169-1185, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28684601

RESUMEN

Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research.


Asunto(s)
Drosophila/genética , Metaboloma/genética , Metabolómica/métodos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metabolómica/tendencias
16.
Genes Dev ; 31(9): 847-848, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28566535

RESUMEN

Many studies have focused on defining the critical transcription factors that specify tissue morphogenesis and differentiation. Our understanding of how these spatial regulators are deployed in the proper temporal order, however, has remained less clear. In this issue of Genes & Development, Uyehara and colleagues (pp. 862-875) provide new insights into the mechanisms by which temporal and spatial regulators are coordinated to control Drosophila wing development during metamorphosis.


Asunto(s)
Proteínas de Drosophila/genética , Ecdisona , Animales , Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , Metamorfosis Biológica/genética , Factores de Transcripción/genética
17.
Mol Metab ; 5(8): 602-614, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27656398

RESUMEN

OBJECTIVE: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC) is an important and rate-limiting step in its metabolism. In pancreatic ß-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. METHODS: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. RESULTS: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, ß-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP) channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. CONCLUSIONS: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia.

18.
Elife ; 52016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27185732

RESUMEN

Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal.


Asunto(s)
Drosophila/fisiología , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Insulina/metabolismo , Animales , Hipoglucemiantes , Secreción de Insulina
19.
PLoS Genet ; 12(4): e1005978, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27058248

RESUMEN

SIRT1 is a member of the sirtuin family of NAD+-dependent deacetylases, which couple cellular metabolism to systemic physiology. Although studies in mouse models have defined a central role for SIRT1 in maintaining metabolic health, the molecular mechanisms remain unclear. Here we show that loss of the Drosophila SIRT1 homolog sir2 leads to the age-progressive onset of hyperglycemia, obesity, glucose intolerance, and insulin resistance. Tissue-specific functional studies show that Sir2 is both necessary and sufficient in the fat body (analogous to the mammalian liver) to maintain glucose homeostasis and peripheral insulin sensitivity. Transcriptional profiling of sir2 mutants by RNA-seq revealed a major overlap with genes regulated by the nuclear receptor Hepatocyte Nuclear Factor 4 (HNF4). Consistent with this, Drosophila HNF4 mutants display diabetic phenotypes similar to those of sir2 mutants, and protein levels for dHNF4 are reduced in sir2 mutant animals. We show that Sir2 exerts these effects by deacetylating and stabilizing dHNF4 through protein interactions. Increasing dHNF4 expression in sir2 mutants is sufficient to rescue their insulin signaling defects, defining this nuclear receptor as an important downstream effector of Sir2 signaling. This study demonstrates that the key metabolic activities of SIRT1 have been conserved through evolution, provides a genetic model for functional studies of phenotypes related to type 2 diabetes, and establishes HNF4 as a critical downstream target by which Sir2 maintains metabolic health.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Histona Desacetilasas/genética , Homeostasis/fisiología , Insulina/metabolismo , Sirtuinas/genética , Envejecimiento , Animales , Diabetes Mellitus Tipo 2/metabolismo , Drosophila/genética , Cuerpo Adiposo/metabolismo , Intolerancia a la Glucosa/genética , Factor Nuclear 4 del Hepatocito/genética , Hiperglucemia/genética , Resistencia a la Insulina/genética , Obesidad/genética , Transducción de Señal/fisiología
20.
Dev Cell ; 35(3): 265-6, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26555046

RESUMEN

In this issue of Developmental Cell, Okamoto and Nishimura (2015) identify a positive feedback loop between neuronal cells that maintains insulin signaling and growth under restricted nutritional conditions.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Neuroglía/metabolismo , Proteínas/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...