Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37723965

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have exhibited potential for treating multiple inflammation- related diseases (IRDs) due to their easy acquisition, unique immunomodulatory and tissue repair properties, and immune-privileged characteristics. It is worth mentioning that MSCs release a wide array of soluble bioactive components in the secretome that modulate host innate and adaptive immune responses and promote the resolution of inflammation. As the first line of defense, macrophages exist throughout the entire inflammation process. They continuously switch their molecular phenotypes accompanied by complementary functional regulation ranging from classically activated pro-inflammatory M1-type (M1) to alternatively activated anti-inflammatory M2-type macrophages (M2). Recent studies have shown that the active intercommunication between MSCs and macrophages is indispensable for the immunomodulatory and regenerative behavior of MSCs in pharmacological cell therapy products. In this review, we systematically summarized the emerging capacities and detailed the molecular mechanisms of the MSC-derived secretome (MSC-SE) in immunomodulating macrophage polarization and preventing excessive inflammation, providing novel insights into the clinical applications of MSC-based therapy in IRD management.

2.
Chin J Cancer Res ; 34(1): 1-10, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35355932

RESUMEN

Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors. However, most patients cannot benefit from such therapies, mainly due to the intrinsic low immunogenicity of cancer cells (CCs) that allows them to escape recognition by immune cells of the body. Immunogenic cell death (ICD), which is a form of regulated cell death, engages in a complex dialogue between dying CCs and immune cells in the tumor microenvironment (TME), ultimately evoking the damage-associated molecular pattern (DAMP) signals to activate tumor-specific immunity. The ICD inducers mediate the death of CCs and improve both antigenicity and adjuvanticity. At the same time, they reprogram TME with a "cold-warm-hot" immune status, ultimately amplifying and sustaining dendritic cell- and T cell-dependent innate sensing as well as the antitumor immune responses. In this review, we discuss how to stimulate ICD based upon the biological properties of CCs that have evolved under diverse stress conditions. Additionally, we highlight how this dynamic interaction contributes to priming tumor immunogenicity, thereby boosting anticancer immune responses. We believe that a deep understanding of these ICD processes will provide a framework for evaluating its vital role in cancer immunotherapy.

3.
Leukemia ; 36(1): 189-196, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34272481

RESUMEN

Increasing the remission rate and reducing the recurrence rate can improve the clinical efficacy of chimeric antigen receptor (CAR) T cell therapy in recurrent/refractory non-Hodgkin lymphoma (r/rNHL). In this open-label, single-arm phase I/II trial, 87 patients with r/rNHL, including 58 patients with aggressive diffuse large B-cell lymphoma and 24 with high tumour burden, received an infusion at doses of 0.5 × 106-8 × 106 TanCAR7 T cells per kilogram of body weight after conditioning chemotherapy. The best overall response rate was 78% (95% confidence interval [CI], 68-86); response rates were consistent across prognostic subgroups. The median follow-up was 27.7 months. The median progression-free survival was 27.6 months (95% CI, 11 to not reached). Cytokine release syndrome (CRS) occurred in 61 patients (70%) with 60% of cases being grade 1 or 2 and 10% being grade 3 or greater. Grade 3 CAR T cell-related encephalopathy syndrome (CRES) occurred in 2 patients (2%). Two patients died from treatment-associated severe pulmonary infection, and one died from CRS-related pulmonary injury between 1 and 3 months post infusion. Long-term remissions were observed following the use of TanCAR7 T cells in r/rNHL with a safety profile that included CRS but few cases of CRES.


Asunto(s)
Antígenos CD19/inmunología , Antígenos CD20/inmunología , Resistencia a Antineoplásicos , Inmunoterapia Adoptiva/mortalidad , Linfoma de Células B Grandes Difuso/terapia , Recurrencia Local de Neoplasia/terapia , Receptores Quiméricos de Antígenos/inmunología , Femenino , Estudios de Seguimiento , Humanos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Pronóstico , Terapia Recuperativa , Tasa de Supervivencia
4.
Nat Commun ; 12(1): 409, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462245

RESUMEN

Insufficient eradication capacity and dysfunction are common occurrences in T cells that characterize cancer immunotherapy failure. De novo DNA methylation promotes T cell exhaustion, whereas methylation inhibition enhances T cell rejuvenation in vivo. Decitabine, a DNA methyltransferase inhibitor approved for clinical use, may provide a means of modifying exhaustion-associated DNA methylation programmes. Herein, anti-tumour activities, cytokine production, and proliferation are enhanced in decitabine-treated chimeric antigen receptor T (dCAR T) cells both in vitro and in vivo. Additionally, dCAR T cells can eradicate bulky tumours at a low-dose and establish effective recall responses upon tumour rechallenge. Antigen-expressing tumour cells trigger higher expression levels of memory-, proliferation- and cytokine production-associated genes in dCAR T cells. Tumour-infiltrating dCAR T cells retain a relatively high expression of memory-related genes and low expression of exhaustion-related genes in vivo. In vitro administration of decitabine may represent an option for the generation of CAR T cells with improved anti-tumour properties.


Asunto(s)
Decitabina/farmacología , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/terapia , Linfocitos T/trasplante , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Citocinas/genética , Citocinas/inmunología , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Ratones , Neoplasias/sangre , Neoplasias/inmunología , Neoplasias/patología , RNA-Seq , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Sci China Life Sci ; 64(3): 363-371, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32712831

RESUMEN

Impaired tumor-specific effector T cells contribute to tumor progression and unfavorable clinical outcomes. As a compensatory T cell-dependent cancer immunoediting strategy, adoptive T cell therapy (ACT) has achieved encouraging therapeutic results, and this strategy is now on the center stage of cancer treatment and research. ACT involves the ex vivo stimulation and expansion of tumor-infiltrating lymphocytes (TILs) with inherent tumor reactivity or T cells that have been genetically modified to express the cognate chimeric antigen receptor or T cell receptor (CAR/TCR), followed by the passive transfer of these cells into a lymphodepleted host. Primed T cells must provide highly efficient and long-lasting immune defense against transformed cells during ACT. Anin-depth understanding of the basic mechanisms of these living drugs can help us improve upon current strategies and design better next-generation T cell-based immunotherapies. From this perspective, we provide an overview of current developments in different ACT strategies, with a focus on frontier clinical trials that offer a proof of principle. Meanwhile, insights into the determinants of ACT are discussed, which will lead to more rational, potent and widespread applications in the future.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Subgrupos de Linfocitos T/inmunología , Humanos
6.
Front Oncol ; 10: 558572, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194624

RESUMEN

Background: Although the programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors have markedly changed the strategies of cancer treatment, most patients with advanced non-small cell lung cancer (NSCLC) do not respond to PD-1/PD-L1 monotherapy. Epigenetic drugs have been hypothesized to possess the potential to sensitize PD-1/PD-L1 inhibitors. Case Presentation: Three patients with advanced metastatic NSCLC failed to respond to first-line systemic therapy and had a low tumor mutation burden, low tumor neoantigen burden, low microsatellite instability, and HLA loss of heterozygosity according to their target lesion biopsies, all of which were considered unfavorable factors for PD-1/PD-L1 blockage. However, all three patients responded to low-dose decitabine, an epigenetic drug, in combination with camrelizumab (anti-PD-1 antibody), with only controllable adverse events, indicating that low-dose decitabine can sensitize PD-1/PD-L1 inhibitors. Summary: We report a novel therapy with low-dose decitabine plus camrelizumab for advanced NSCLC on the basis of successful treatment of three patients, emphasizing the potential of epigenetic drugs to regulate PD-1/PD-L1 inhibitors in advanced NSCLC.

7.
Blood ; 136(14): 1632-1644, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32556247

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting CD19 have achieved breakthroughs in the treatment of hematological malignancies, such as relapsed/refractory non-Hodgkin lymphoma (r/rNHL); however, high rates of treatment failure and recurrence after CAR T-cell therapy are considerable obstacles to overcome. In this study, we designed a series of tandem CARs (TanCARs) and found that TanCAR7 T cells showed dual antigen targeting of CD19 and CD20, as well as formed superior and stable immunological synapse (IS) structures, which may be related to their robust antitumor activity. In an open-label single-arm phase 1/2a trial (NCT03097770), we enrolled 33 patients with r/rNHL; 28 patients received an infusion after conditioning chemotherapy. The primary objective was to evaluate the safety and tolerability of TanCAR7 T cells. Efficacy, progression-free survival, and overall survival were evaluated as secondary objectives. Cytokine release syndrome occurred in 14 patients (50%): 36% had grade 1 or 2 and 14% had grade 3. No cases of CAR T-cell-related encephalopathy syndrome (CRES) of grade 3 or higher were confirmed in any patient. One patient died from a treatment-associated severe pulmonary infection. The overall response rate was 79% (95% confidence interval [CI], 60-92%), and the complete response rate was 71%. The progression-free survival rate at 12 months was 64% (95% CI, 43-79%). In this study, TanCAR7 T cells elicited a potent and durable antitumor response, but not grade 3 or higher CRES, in patients with r/rNHL.


Asunto(s)
Antígenos CD19/inmunología , Antígenos CD20/inmunología , Inmunoterapia Adoptiva , Linfoma de Células B/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Animales , Técnicas de Cultivo de Célula , Degranulación de la Célula/inmunología , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/diagnóstico , Linfoma de Células B/etiología , Linfoma de Células B/mortalidad , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Recurrencia , Retratamiento , Linfocitos T/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Hematol Oncol ; 13(1): 30, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245502

RESUMEN

BACKGROUND: Despite the impressive complete remission (CR) induced by CD19 CAR-T cell therapy in B-ALL, the high rate of complete responses is sometimes limited by the emergence of CD19-negative leukemia. Bispecific CAR-modified T cells targeting both CD19 and CD22 may overcome the limitation of CD19-negative relapse. METHODS: We here report the design of a bispecific CAR simultaneous targeting of CD19 and CD22. We performed a phase 1 trial of bispecific CAR T cell therapy in patients with relapsed/refractory precursor B-ALL at a dose that ranged from 1.7 × 106 to 3 × 106 CAR T cells per kilogram of body weight. RESULTS: We demonstrate bispecific CD19/CD22 CAR T cells could trigger robust cytolytic activity against target cells. MRD-negative CR was achieved in 6 out of 6 enrolled patients. Autologous CD19/CD22 CAR T cells proliferated in vivo and were detected in the blood, bone marrow, and cerebrospinal fluid. No neurotoxicity occurred in any of the 6 patients treated. Of note, one patient had a relapse with blast cells that no longer expressed CD19 and exhibited diminished CD22 site density approximately 5 months after treatment. CONCLUSION: In brief, autologous CD19/CD22 CAR T cell therapy is feasible and safe and mediates potent anti-leukemic activity in patients with relapsed/refractory B-ALL. Furthermore, the emergence of target antigen loss and expression downregulation highlights the critical need to anticipate antigen escape. Our study demonstrates the reliability of bispecific CD19/CD22 CAR T cell therapy in inducing remission in adult patients with relapsed/refractory B-ALL. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03185494.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Adolescente , Adulto , Femenino , Humanos , Inmunoterapia Adoptiva/efectos adversos , Masculino , Recurrencia Local de Neoplasia/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Resultado del Tratamiento , Adulto Joven
11.
J Immunother Cancer ; 7(1): 209, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391096

RESUMEN

BACKGROUND: Blocking programmed death-1 (PD-1) is considered to be a promising strategy to improve T cell function, and this is being explored in many ongoing clinical trials. In fact, our knowledge about PD-1 is primarily based on the results of short-term experiments or observations, but how long-lasting PD-1 blockade can affect T cell function remains unclear. METHODS: We planned to use shRNA-based gene knockdown technology to mimic long-lasting PD-1 blockade. We constructed PD-1 steadily blocked chimeric antigen receptor modified T (CAR-T) cells, and with these cells we can clearly study the effects of PD-1 knockdown on T cell function. The anti-tumor function, proliferation ability and differentiation status of PD-1 silenced CAR-T cells were studied by in vitro and animal experiments. RESULTS: According to short-term in vitro results, it was reconfirmed that the resistance to programmed death-ligand 1 (PD-L1)-mediated immunosuppression could be enhanced by PD-1 blockade. However, better anti-tumor function was not presented by PD-1 blocked CAR-T cells in vitro or in vivo experiments. It was found that PD-1 knockdownmight impair the anti-tumor potential of CAR-T cells because it inhibited T cells' proliferation activity. In addition, we observed that PD-1 blockade would accelerate T cells' early differentiation and prevent effector T cells from differentiating into effect memory T cells, and this might be the reason for the limited proliferation of PD-1 silenced CAR-T cells. CONCLUSION: These results suggest that PD-1 might play an important role in maintaining the proper proliferation and differentiation of T cells, and PD-1 silencing would impair T cells' anti-tumor function by inhibiting their proliferation activity.


Asunto(s)
Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Células A549 , Animales , Diferenciación Celular/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Receptor de Muerte Celular Programada 1/genética
12.
J Hematol Oncol ; 12(1): 57, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182121

RESUMEN

BACKGROUND: Chimeric antigen receptor T (CAR-T) cell therapy simultaneously against CD19 and CD22 is an attractive strategy to address the antigen escape relapse after CD19-directed CAR-T cell therapies. However, the potential of optimizing the durability of remission by this approach in patients with B cell acute lymphoblastic leukemia (B-ALL) remains a critical unanswered question so far. CASE PRESENTATION: We treated an adult patient with relapsed and refractory B-ALL after haploidentical hematopoietic stem cell transplantation (HSCT) by administering haploidentical CAR-T cells targeting both CD19 and CD22 following preparative lymphodepleting chemotherapy. This patient has remained in minimal residual disease-negative remission for more than 14 months and has been tapered off graft versus host disease prophylaxis. CONCLUSIONS: CAR simultaneously targeting CD19 and CD22 has the potential of inducing long-term remission in patients with B-ALL.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia de Células B/terapia , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Adulto , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Leucemia de Células B/inmunología , Masculino , Inducción de Remisión
13.
Sci China Life Sci ; 61(11): 1320-1332, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30414005

RESUMEN

The host immune system plays an instrumental role in the surveillance and elimination of tumors by recognizing and destroying cancer cells. In recent decades, studies have mainly focused on adoptive immunotherapy using engineered T cells for the treatment of malignant diseases. Through gene engraftment of the patient's own T cells with chimeric antigen receptor (CAR), they can recognize tumor specific antigens effectively and eradicate selectively targeted cells in an MHC-independent fashion. To date, CAR-T cell therapy has shown great clinical utility in patients with B-cell leukemias. Owing to different CAR designs and tumor complex microenvironments, genetically redirected T cells may generate diverse biological properties and thereby impact their long-term clinical performance and outcome. Meanwhile some unexpected toxicities that result from CAR-T cell application have been examined and limited the curative effects. Diverse important parameters are closely related with adoptively transferred cell behaviors, including CAR-T cells homing, CAR constitutive signaling, T cell differentiation and exhaustion. Thus, understanding CARs molecular design to improve infused cell efficacy and safety is crucial to clinicians and patients who are considering this novel cancer therapeutics. In this review, the developments in CAR-T cell therapy and the limitations and perspectives in optimizing this technology towards clinical application are discussed.


Asunto(s)
Ingeniería Genética , Neoplasias Hematológicas/terapia , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/inmunología , Terapia Genética/efectos adversos , Terapia Genética/tendencias , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/tendencias , Receptores Quiméricos de Antígenos/química , Receptores Quiméricos de Antígenos/genética , Linfocitos T/trasplante , Microambiente Tumoral
14.
Stem Cells Int ; 2017: 3738071, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337222

RESUMEN

Mesenchymal stem cells (MSCs) can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM) from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs) overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM) components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM) can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

15.
J Tissue Eng Regen Med ; 11(5): 1479-1489, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26118627

RESUMEN

Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Dermis/metabolismo , Folículo Piloso/fisiología , Regeneración , Proteína Wnt1/metabolismo , Animales , Dermis/citología , Folículo Piloso/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratas , Ratas Sprague-Dawley
16.
Sci China Life Sci ; 59(12): 1305-1312, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27864711

RESUMEN

Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration. However, it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes, which generate a suitable microenvironment for inflammatory resolution. Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells. During this process, the horizontal transfer of exosomal microRNAs (miRNAs) to acceptor cells, where they regulate target gene expression, is of particular interest for understanding the basic biology of inflammation ablation, tissue homeostasis, and development of therapeutic approaches. In this review, we describe a signature of three specific miRNAs (miR-21, miR-146a, and miR-181) present in human umbilical cord MSC-derived exosomes (MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs. We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.


Asunto(s)
Exosomas/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Cicatrización de Heridas/genética , Heridas y Lesiones/genética
17.
Biomed Res Int ; 2016: 5317630, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26989687

RESUMEN

OBJECTIVE: To evaluate the therapeutic effects of G-CSF administration after intraosseous (IO) resuscitation in hemorrhagic shock (HS) combined with cutaneous injury rats. METHODS: The rats were randomly divided into four groups: (1) HS with resuscitation (blank), (2) HS with resuscitation + G-CSF (G-CSF, 200 µg/kg body weight, subcutaneous injection), (3) HS with resuscitation + normal saline solution injection (normal saline), and (4) HS + G-CSF injection without resuscitation (Unres/G-CSF). To estimate the treatment effects, the vital signs of alteration were first evaluated, and then wound closure rates and homing of MSCs and EPCs to the wound skins and vasculogenesis were measured. Besides, inflammation and vasculogenesis related mRNA expressions were also examined. RESULTS: IO infusion hypertonic hydroxyethyl starch (HHES) exhibited beneficial volume expansion roles and G-CSF administration accelerated wound healing 3 days ahead of other groups under hemorrhagic shock. Circulating and the homing of MSCs and EPCs at wound skins were significantly elevated at 6 h after G-CSF treatment. Inflammation was declined since 3 d while angiogenesis was more obvious in G-CSF treated group on day 9. CONCLUSIONS: These results suggested that the synergistical application of HHES and G-CSF has life-saving effects and is beneficial for improving wound healing in HS combined with cutaneous injury rats.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Inflamación/tratamiento farmacológico , Choque Hemorrágico/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Humanos , Derivados de Hidroxietil Almidón/administración & dosificación , Inflamación/patología , Infusiones Intraóseas , Ratas , Resucitación , Choque Hemorrágico/patología , Piel/efectos de los fármacos , Piel/lesiones , Piel/patología
18.
Wound Repair Regen ; 24(1): 45-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26463737

RESUMEN

Bone marrow-derived mesenchymal stem cells (BM-MSCs) have properties that make them promising for the treatment of chronic nonhealing wounds. The major challenge is ensuring an efficient, safe, and painless delivery of BM-MSCs. Tissue-engineered skin substitutes have considerable benefits in skin damage resulting from chronic nonhealing wounds. Here, we have constructed a three-dimensional biomimetic scaffold known as collagen-chitosan sponge scaffolds (CCSS) using the cross-linking and freeze-drying method. Scanning electron microscopy images showed that CCSS had an interconnected network pore configuration about 100 µm and exhibited a suitable swelling ratio for maintaining morphological stability and appropriate biodegradability to improve biostability using swelling and degradation assays. Furthermore, BM-MSCs were seeded in CCSS using the two-step seeding method to construct tissue-engineered skin substitutes. In addition, in this three-dimensional biomimetic CCSS, BM-MSCs secreted their own collagen and maintain favorable survival ability and viability. Importantly, BM-MSCs exhibited a significant upregulated expression of proangiogenesis factors, including HIF-1α, VEGF, and PDGF following hypoxia pretreatment. In vivo, hypoxia pretreatment of the skin substitute observably accelerated wound closure via the reduction of inflammation and enhanced angiogenesis in diabetic rats with hindlimb ischemia. Thus, hypoxia pretreatment of the skin substitutes can serve as ideal bioengineering skin substitutes to promote optimal diabetic skin wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Hipoxia/metabolismo , Isquemia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Piel Artificial , Ingeniería de Tejidos/métodos , Andamios del Tejido , Cicatrización de Heridas , Animales , Células de la Médula Ósea , Quitosano , Colágeno , Citocinas/genética , Citocinas/metabolismo , Liofilización , Miembro Posterior , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Microscopía Electrónica de Rastreo , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
J Transl Med ; 13: 308, 2015 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-26386558

RESUMEN

BACKGROUND: Within the last few years, it has become evident that LPS-preconditioned mesenchymal stromal cells (LPS pre-MSCs) show enhanced paracrine effects, including increased trophic support and improved regenerative and repair properties. MSCs may release large amounts of exosomes for cell-to-cell communication and maintain a dynamic and homeostatic microenvironment for tissue repair. The present study assesses the therapeutic efficacy and mechanisms of LPS-preconditioned MSC-derived exosomes (LPS pre-Exo) for chronic inflammation and wound healing. METHODS: We extracted exosomes from the supernatant of LPS pre-MSCs using a gradient centrifugation method. In vitro, THP-1 cells were cultured with high glucose (HG, 30 mM) as an inflammatory model and treated with LPS pre-Exo for 48 h. The expression of inflammation-related cytokines was detected by real-time RT-PCR, and the distribution of macrophage subtype was measured by immunofluorescence. Next, the miRNA expression profiles of LPS pre-Exo were evaluated using miRNA microarray analysis. The molecular signaling pathway responsible for the regenerative potential was identified by western blotting. In vivo, we established a cutaneous wound model in streptozotocin-induced diabetic rats, and LPS pre-Exo were injected dispersively into the wound edge. The curative effects of LPS pre-Exo on inflammation and wound healing were observed and evaluated. RESULTS: LPS pre-Exo have a better ability than untreated MSC-derived exosomes (un-Exo) to modulate the balance of macrophages due to their upregulation of the expression of anti-inflammatory cytokines and promotion of M2 macrophage activation. Microarray analysis of LPS pre-Exo identified the unique expression of let-7b compared with un-Exo, and the let-7b/TLR4 pathway served as potential contributor to macrophage polarization and inflammatory ablation. Further investigation of the mechanisms that control let-7b expression demonstrated that a TLR4/NF-κB/STAT3/AKT regulatory signaling pathway plays a critical role in the regulation of macrophage plasticity. Knockdown of AKT in THP-1 cells similarly abolished the immunomodulatory effect of LPS pre-Exo. In vivo, LPS pre-Exo greatly alleviated inflammation and enhanced diabetic cutaneous wound healing. CONCLUSION: LPS pre-Exo may have improved regulatory abilities for macrophage polarization and resolution of chronic inflammation by shuttling let-7b, and these exosomes carry much immunotherapeutic potential for wound healing.


Asunto(s)
Exosomas/metabolismo , Inflamación/terapia , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Células Madre Mesenquimatosas/efectos de los fármacos , MicroARNs/metabolismo , Línea Celular , Humanos , Técnicas In Vitro , Inflamación/patología , Células Madre Mesenquimatosas/citología
20.
PLoS One ; 10(5): e0126715, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996677

RESUMEN

Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.


Asunto(s)
Células Endoteliales/metabolismo , Hipoxia/metabolismo , Isquemia/metabolismo , Extremidad Inferior/irrigación sanguínea , Células Madre Mesenquimatosas/metabolismo , Neovascularización Patológica/metabolismo , Inductores de la Angiogénesis/metabolismo , Angiografía , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isquemia/etiología , Extremidad Inferior/diagnóstico por imagen , Masculino , Trasplante de Células Madre Mesenquimatosas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Ultrasonografía , Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA