Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 29(18): 28767-28777, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614999

RESUMEN

In this paper, a metamaterial structure with radar and infrared (IR) compatible stealth characteristics is designed based on the principle of plasmonic absorbing structure (PAS). Due to the lack of reports on PAS-based IR radar compatible stealth, this article combines PAS and IR frequency selective surfaces to achieve the desired purpose. Through mathematical modeling and dispersion engineering of the unit cell proposed, a PAS with ultra-wideband wave absorption is realized. The low emissivity of the IR atmospheric window band is realized by means of the simulation and analysis of the IR frequency selective surface with different indium tin oxide (ITO) occupation ratios. The absorptivity of designed structure is higher than 90% from 4GHz to 28.6GHz, and the emissivity of the IR atmospheric window is only 0.3. The experience of the fabricated sample is consistent with the theoretical analysis and the simulation. Our method enriches the implementation strategies of radar-IR compatibility and has reference significance for multi-spectrum compatible stealth.

2.
Opt Express ; 29(14): 22108-22116, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265982

RESUMEN

Optically transparent metamaterials with the performance of infrared radar compatible stealth have been designed and manufactured on the basis of the continuous in-depth research on single-band stealth technology. In this paper, metamaterials are designed through theoretical calculations and modeling simulations. The designed structure can achieve higher than 90% broadband (8.7-32 GHz) absorption at wide-angle (45 degrees), emissivity of 0.3 in infrared atmospheric window, and optical transparency. In addition, the material can be bent, which greatly expands its application scenarios. The experimental results are consistent with the theoretical calculation and simulation results.

3.
Opt Express ; 28(19): 27774-27784, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988063

RESUMEN

In this paper, an optically transparent coding metasurface structure based on indium tin oxide (ITO) thin films with simultaneously low infrared (IR) emissivity and microwave scattering reduction is proposed. To this end, two ITO coding elements which can reflect 0° and 180° phase responses are firstly designed. Based on these two elements, four coding sequences with different scattering patterns are designed. Three of them can realize anomalous reflections and the fourth can realize random diffusion of normal incident electromagnetic (EM) waves. A prototype of the random diffusion coding metasurface was fabricated and measured. The experimental results show that for normal incident EM waves, at least 10dB backward scattering reduction from 3.8GHz to 6.8GHz can be achieved, and the structure is polarization insensitive. The averaged transmittance of visible light through the coding metasurface reaches up to 72.2%. In addition, due to the high occupation ratio of ITO on the outside of the coding metasurface, a low IR emissivity of about 0.275 is obtained. Good consistency between the experiment and simulation results convincingly verifies the coding metasurface. Due to its multispectral compatibility, the proposed coding metasurface may find potential applications in multi-spectral stealth, camouflage, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...