Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1424766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166252

RESUMEN

Under the sufficient nitrogen supply, it is of great significance to investigate the law of biomass allocation, root morphological traits, and the salt absorption capacity of euhalophytes to evaluate their biological desalination in saline soil. Although the curvilinear responses of biomass accumulation and root morphology in response to soil salinity have been recognized, these perceptions are still confined to the descriptions of inter-treatment population changes and lack details on biomass allocation in organs at an individual level. In this study, Suaeda salsa was grown in root boxes across a range of soil salt levels. The study showed that their growth and development were significantly affected by soil soluble salts. The law of biomass allocation was described as follows: increased soil soluble salts significantly increased the leaf mass ratio and decreased the stem mass ratio, and slightly increased the root mass ratio among treatments. For individuals at each treatment, leaf mass ratio > stem mass ratio > root mass ratio, except in the control treatment at the flower bud and fruit stages. Biomass responses of the control treatment indicated that salt was not rigorously required for Suaeda salsa in the presence of an adequate nitrogen supply, as verified by the correlation between biomass, nitrogen, and soil soluble salt. Salt could significantly inhibit the growth of Suaeda salsa (P<0.01), whereas nitrogen could significantly promote its growth (P<0.01). Root morphology in response to soil soluble salts showed that salt acquisition by the root was highest at a salt level of 0.70%, which corresponds to light saline soil. Consequently, we conclude that phytodesalination by Suaeda salsa was optimal in the light saline soil, followed by moderate saline soil.

2.
Commun Biol ; 7(1): 1061, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209991

RESUMEN

Halophyte shrubs, prevalent in arid regions globally, create saline fertile islands under their canopy. This study investigates the soil microbial communities and their energy utilization strategies associated with tamarisk shrubs in arid ecosystems. Shotgun sequencing revealed that high salinity in tamarisk islands reduces functional gene alpha-diversity and relative abundance compared to bare soils. However, organic matter accumulation within islands fosters key halophilic archaea taxa such as Halalkalicoccus, Halogeometricum, and Natronorubrum, linked to processes like organic carbon oxidation, nitrous oxide reduction, and sulfur oxidation, potentially strengthening the coupling of nutrient cycles. In contrast, bare soils harbor salt-tolerant microbes with genes for autotrophic energy acquisition, including carbon fixation, H2 or CH4 consumption, and anammox. Additionally, isotope analysis shows higher microbial carbon use efficiency, N mineralization, and denitrification activity in tamarisk islands. Our findings demonstrate that halophyte shrubs serve as hotspots for halophilic microbes, enhancing microbial nutrient transformation in saline soils.


Asunto(s)
Salinidad , Plantas Tolerantes a la Sal , Microbiología del Suelo , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/genética , Ecosistema , Archaea/metabolismo , Archaea/genética , Archaea/clasificación , Suelo/química , Microbiota , Clima Desértico , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
3.
Mar Pollut Bull ; 206: 116754, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053262

RESUMEN

Soil salinity in the root rhizosphere is highly heterogeneous in natural environments. Suaeda salsa L. is a highly salt-adapted halophyte, but it is unclear how S. salsa responds to non-uniform salinity conditions. The results of the root-splitting experiment showed that the increase in root dry weight in the low salt side (50/350-50) root of S. salsa may be associated with relative increases in root morphology. The concentration of Na+, Cl-, K+, the Na+ efflux and the expression of SsSOS1 in the low salt side root were higher than that of uniform low salt treatment. The expression of SsPIP1-4, SsPIP2-1, SsNRT1.1 and SsNRT2.1 were upregulated, which increased water and NO3- uptake in the low salt side root compared to uniform low salt treatment. In conclusion, under non-uniform salt treatment, the increased Na+ efflux, water and NO3- uptake from the low salt side root can alleviate salt stress in S. salsa.


Asunto(s)
Chenopodiaceae , Raíces de Plantas , Salinidad , Plantas Tolerantes a la Sal , Chenopodiaceae/metabolismo , Raíces de Plantas/metabolismo , Sodio/metabolismo , Iones , Suelo/química
4.
Plants (Basel) ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065481

RESUMEN

The morphological adjustments of euhalophytes are well-known to be influenced by the soil-soluble salt variation; however, whether and how these changes in morphological traits alter the biomass allocation pattern remains unclear, especially under different NaCl levels. Therefore, an allometric analysis was applied to investigate the biomass allocation pattern and morphological plasticity, and the carbon (C), nitrogen (N), and phosphorus (P) stoichiometric characteristics of the euhalophyte Suaeda Salsa (S. salsa) at the four soil-soluble salt levels of no salt (NS), light salt (LS), moderate salt (MS), and heavy salt (HS). The results showed that soil-soluble salts significantly change the biomass allocation to the stems and leaves (p < 0.05). With the growth of S. salsa, the NS treatment produced a downward leaf mass ratio (LMR) and upward stem mass ratio (SMR); this finding was completely different from that for the salt treatments. When S. salsa was harvested on the 100th day, the HS treatment had the highest LMR (61%) and the lowest SMR (31%), while the NS treatment was the opposite, with an LMR of 44% and an SMR of 50%. Meanwhile, the soil-soluble salt reshaped the morphological characteristics of S. salsa (e.g., root length, plant height, basal stem diameter, and leaf succulence). Combined with the stoichiometric characteristics, N uptake restriction under salt stress is a vital reason for inhibited stem growth. Although the NS treatment had the highest biomass (48.65 g root box-1), the LS treatment had the highest salt absorption (3.73 g root box-1). In conclusion, S. salsa can change its biomass allocation pattern through morphological adjustments to adapt to different saline-alkali habitats. Moreover, it has an optimal biological desalting effect in lightly saline soil dominated by NaCl.

5.
Sci Total Environ ; 945: 173923, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38880144

RESUMEN

Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.


Asunto(s)
Fabaceae , Metales Pesados , Rhizobium , Contaminantes del Suelo , Fabaceae/metabolismo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Rhizobium/fisiología , Biodegradación Ambiental , Suelo/química , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo
6.
J Environ Manage ; 364: 121311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38875977

RESUMEN

Soil salinization and sodification, the primary causes of land degradation and desertification in arid and semi-arid regions, demand effective monitoring for sustainable land management. This study explores the utility of partial least square (PLS) latent variables (LVs) derived from visible and near-infrared (Vis-NIR) spectroscopy, combined with remote sensing (RS) and auxiliary variables, to predict electrical conductivity (EC) and sodium absorption ratio (SAR) in northern Xinjiang, China. Using 90 soil samples from the Karamay district, machine learning models (Random Forest, Support Vector Regression, Cubist) were tested in four scenarios. Modeling results showed that RS and Land use alone were unreliable predictors, but the addition of topographic attributes significantly improved the prediction accuracy for both EC and SAR. The incorporation of PLS LVs derived from Vis-NIR spectroscopy led to the highest performance by the Random Forest model for EC (CCC = 0.83, R2 = 0.80, nRMSE = 0.48, RPD = 2.12) and SAR (CCC = 0.78, R2 = 0.74, nRMSE = 0.58, RPD = 2.25). The variable importance analysis identified PLS LVs, certain topographic attributes (e.g., valley depth, elevation, channel network base level, diffuse insolation), and specific RS data (i.e., polarization index of VV + VH) as the most influential predictors in the study area. This study affirms the efficiency of Vis-NIR data for digital soil mapping, offering a cost-effective solution. In conclusion, the integration of proximal soil sensing techniques and highly relevant topographic attributes with the RF model has the potential to yield a reliable spatial model for mapping soil EC and SAR. This integrated approach allows for the delineation of hazardous zones, which in turn enables the consideration of best management practices and contributes to the reduction of the risk of degradation in salt-affected and sodicity-affected soils.


Asunto(s)
Salinidad , Suelo , Suelo/química , China , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Análisis de los Mínimos Cuadrados
7.
Appl Environ Microbiol ; 90(4): e0235523, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38535171

RESUMEN

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Asunto(s)
Chenopodiaceae , Suelo , Suelo/química , Solución Salina , Cloruro de Sodio , Nitrificación , Plantas Tolerantes a la Sal
8.
Plants (Basel) ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475566

RESUMEN

Succulence is a key trait involved in the response of Suaeda salsa to salt stress. However, few studies have investigated the effects of the interaction between salt and drought stress on S. salsa growth and succulence. In this study, the morphology and physiology of S. salsa were examined under different salt ions (Na+, Ca2+, Mg2+, Cl-, and SO42-) and simulated drought conditions using different polyethylene glycol concentrations (PEG; 0%, 5%, 10%, and 15%). The results demonstrate that Na+ and Ca2+ significantly increased leaf succulence by increasing leaf water content and enlarging epidermal cell size compared to Mg2+, Cl-, and SO42-. Under drought (PEG) stress, with an increase in drought stress, the biomass, degree of leaf succulence, and water content of S. salsa decreased significantly in the non-salt treatment. However, with salt treatment, the results indicated that Na+ and Ca2+ could reduce water stress due to drought by stimulating the succulence of S. salsa. In addition, Na+ and Ca2+ promoted the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which could reduce oxidative stress. In conclusion, Na+ and Ca2+ are the main factors promoting succulence and can effectively alleviate drought stress in S. salsa.

9.
Sci Rep ; 14(1): 450, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172293

RESUMEN

Biochar has shown potential as a sorbent for reducing Cd levels in water. Euhalophytes, which thrive in saline-alkali soils containing high concentrations of metal ions and anions, present an intriguing opportunity for producing biochar with inherent metal adsorption properties. This study focused on biochar derived from the euhalophyte Salicornia europaea and aimed to investigate its Cd adsorption capacity through adsorption kinetics and isotherm experiments. The results demonstrated that S. europaea biochar exhibited a high specific surface area, substantial base cation content, and a low negative surface charge, making it a highly effective adsorbent for Cd. The adsorption data fit well with the Langmuir isotherm model, revealing a maximum adsorption capacity of 108.54 mg g-1 at 25 °C. The adsorption process involved both surface adsorption and intraparticle diffusion. The Cd adsorption mechanism on the biochar encompassed precipitation, ion exchange, functional group complexation, and cation-π interactions. Notably, the precipitation of Cd2+ with CO32- in the biochar played a dominant role, accounting for 73.7% of the overall removal mechanism. These findings underscore the potential of euhalophytes such as S. europaea as a promising solution for remediating Cd contamination in aquatic environments.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cadmio/análisis , Adsorción , Purificación del Agua/métodos , Agua , Carbón Orgánico , Cationes , Cinética , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 57(48): 19782-19792, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37966898

RESUMEN

Dissolved organic matter (DOM) is involved in numerous biogeochemical processes, and understanding the ecological succession of DOM is crucial for predicting its response to farming (e.g., fertilization) practices. Although plentiful studies have examined how fertilization practice affects the content of soil DOM, it remains unknown how long-term fertilization drives the succession of soil DOM over temporal scales. Here, we investigated the succession of DOM in paddy rice rhizosphere soils subjected to different long-term fertilization treatments (CK: no fertilization; NPK: inorganic fertilization; OM: organic fertilization) along with plant growth. Our results demonstrated that long-term fertilization significantly promoted the molecular chemodiversity of DOM, but it weakened the correlation between DOM composition and plant development. Time-decay analysis indicated that the DOM composition had a shorter halving time under CK treatment (94.7 days), compared to NPK (337.4 days) and OM (223.8 days) treatments, reflecting a lower molecular turnover rate of DOM under fertilization. Moreover, plant development significantly affected the assembly process of DOM only under CK, not under NPK and OM treatments. Taken together, our results demonstrated that long-term fertilization, especially inorganic fertilization, greatly weakens the ecological succession of DOM in the plant rhizosphere, which has a profound implication for understanding the complex plant-DOM interactions.


Asunto(s)
Oryza , Suelo , Suelo/química , Rizosfera , Materia Orgánica Disuelta , Fertilización , Fertilizantes/análisis
11.
Science ; 380(6650): 1114, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319221
12.
Plants (Basel) ; 12(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37176923

RESUMEN

Suaeda aralocaspica, which is an annual halophyte, grows in saline deserts in Central Asia with potential use in saline soil reclamation and salt tolerance breeding. Studying its genetic diversity is critical for effective conservation and breeding programs. In this study, we aimed to develop a set of polymorphic microsatellite markers to analyze the genetic diversity of S. aralocaspica. We identified 177,805 SSRs from the S. aralocaspica genome, with an average length of 19.49 bp, which were present at a density of 393.37 SSR/Mb. Trinucleotide repeats dominated (75.74%) different types of motifs, and the main motif was CAA/TTG (44.25%). We successfully developed 38 SSR markers that exhibited substantial polymorphism, displaying an average of 6.18 alleles with accompanying average polymorphism information content (PIC) value of 0.516. The markers were used to evaluate the genetic diversity of 52 individuals collected from three populations of S. aralocaspica in Xinjiang, China. The results showed that the genetic diversity was moderate to high, with a mean expected heterozygosity (He) of 0.614, a mean Shannon's information index (I) of 1.23, and a mean genetic differentiation index (Fst) of 0.263. The SSR markers developed in this study provide a valuable resource for future genetic studies and breeding programs of S. aralocaspica, and even other species in Suaeda.

13.
Environ Sci Pollut Res Int ; 30(24): 66113-66124, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37097582

RESUMEN

Glycophyte biomass - derived biochars have proven to be effective in the amelioration of acidic soil. However, there is scarce information on the characteristics and soil amelioration effects of halophyte-derived biochars. In this study, a typical halophyte Salicornia europaea, which is mainly distributed in the saline soils and salt-lake shores of China, and a glycophyte Zea mays, which is widely planted in the north of China, were selected to produce biochars with a pyrolysis process at 500 °C for 2 h. S. europaea-derived and Z. mays-derived biochars were characterized in elemental content, pores, surface area, and surface functional groups, and then by using a pot experiment their potential utilizable value as acidic soil conditioner was evaluated. The results showed that compared with Z. mays-derived biochar, S. europaea-derived biochar displayed higher pH, ash contents, base cations (K+, Ca2+, Na+, and Mg2+) contents and exhibited more larger surface area and pore volume than Z. mays-derived biochar. Both biochars had abundant oxygen-containing functional groups. Upon treating the acidic soil, the pH of acidic soil was increased by 0.98, 2.76, and 3.36 units after the addition of 1%, 2%, and 4% S. europaea-derived biochar, while it was increased only by 0.10, 0.22, and 0.56 units at 1%, 2%, and 4% Z. mays-derived biochar. High alkalinity in S. europaea-derived biochar was the main reason for the increase of pH value and base cations in acidic soil. Thus, application of halophyte biochar such as S. europaea-derived biochar is an alternative method for the amelioration of acidic soils.


Asunto(s)
Chenopodiaceae , Contaminantes del Suelo , Suelo/química , Plantas Tolerantes a la Sal , Carbón Orgánico/química , Contaminantes del Suelo/análisis
14.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555131

RESUMEN

Nitrogen accelerates salt accumulation in the root zone of an euhalophyte, which might be beneficial for inhibiting the salt damage and interspecific competition for nutrients of non-halophytes in intercropping. However, the variations in the effect of euhalophyte/non-halophyte intercropping with nitrogen supply are poorly understood. Here, we selected the euhalophyte Suaeda salsa (suaeda) and non-halophyte Zea mays L. (maize) as the research objects, setting up three cropping patterns in order to explore the influence of nitrogen application on the intercropping effect in the suaeda/maize intercropping. The results showed that the biomass of maize in the intercropping was significantly lower than that in the monoculture, while for suaeda, it was higher in the intercropping than that in the monoculture. The biomass of maize under NO3--N treatment performed significantly higher than that under no nitrogen treatment. Moreover, under suitable NO3--N treatment, more salt ions (Na+, K+) gathered around the roots of suaeda, which weakened the salt damage on maize growth. In the intercropping, the effect of NO3--N on the maize growth was enhanced when compared with the non-significant effect of NH4+-N, but a positive effect of NH4+-N on suaeda growth was found. Therefore, the disadvantage of maize growth in the intercropping suaeda/maize might be caused by interspecific competition to a certain extent, providing an effective means for the improvement of saline-alkali land by phytoremediation.


Asunto(s)
Chenopodiaceae , Zea mays , Nitrógeno/análisis , Cloruro de Sodio , Cloruro de Sodio Dietético , Plantas Tolerantes a la Sal , Suelo , Agricultura/métodos
15.
Front Plant Sci ; 13: 973919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330236

RESUMEN

Drip irrigation under plastic film mulch is a common agricultural practice used to conserve water. However, compared to traditional flood irrigation with film mulch, this practice limit cotton root development from early flowering stage and may cause premature senescence in cotton. Changes of root will consequently shape the composition and activity of rhizosphere microbial communities, however, the effect of this farming practice on cotton rhizosphere microbiota remains poorly understood. This study investigated rhizosphere bacteria and soil functionality in response to different irrigation practices -including how changes in rhizosphere bacterial diversity alter soil nutrient cycling. Drip irrigation under plastic film mulch was shown to enhance bacterial diversity by lowering the salinity and increasing the soil moisture. However, the reduced root biomass and soluble sugar content of roots decreased potential copiotrophic taxa, such as Bacteroidetes, Firmicutes, and Gamma-proteobacteria, and increased potential oligotrophic taxa, such as Actinobacteria, Acidobacteria, and Armatimonadetes. A core network module was strongly correlated with the functional potential of soil. This module not only contained most of the keystone taxa but also comprised taxa belonging to Planctomycetaceae, Gemmatimonadaceae, Nitrosomonadaceae, and Rhodospirillaceae that were positively associated with functional genes involved in nutrient cycling. Drip irrigation significantly decreased the richness of the core module and reduced the functional potential of soil in the rhizosphere. Overall, this study provides evidence that drip irrigation under plastic film mulch alters the core bacterial network module and suppresses soil nutrient cycling.

16.
Gigascience ; 112022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36310248

RESUMEN

BACKGROUND: The caper bush Capparis spinosa L., one of the most economically important species of Capparaceae, is a xerophytic shrub that is well adapted to drought and harsh environments. However, genetic studies on this species are limited because of the lack of its reference genome. FINDINGS: We sequenced and assembled the Capparis spinosa var. herbacea (Willd.) genome using data obtained from the combination of PacBio circular consensus sequencing and high-throughput chromosome conformation capture. The final genome assembly was approximately 274.53 Mb (contig N50 length of 9.36 Mb, scaffold N50 of 15.15 Mb), 99.23% of which was assigned to 21 chromosomes. In the whole-genome sequence, tandem repeats accounted for 19.28%, and transposable element sequences accounted for 43.98%. The proportion of tandem repeats in the C. spinosa var. herbacea genome was much higher than the average of 8.55% in plant genomes. A total of 21,577 protein-coding genes were predicted, with 98.82% being functionally annotated. The result of species divergence times showed that C. spinosa var. herbacea and Tarenaya hassleriana separated from a common ancestor 43.31 million years ago. CONCLUSIONS: This study reported a high-quality reference genome assembly and genome features for the Capparaceae family. The assembled C. spinosa var. herbacea genome might provide a system for studying the diversity, speciation, and evolution of this family and serve as an important resource for understanding the mechanism of drought and high-temperature resistance.


Asunto(s)
Capparaceae , Capparis , Filogenia , Genómica , Genoma de Planta
17.
Plants (Basel) ; 11(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406933

RESUMEN

Nitrogen (N) application might exert a great impact on root (biomass, length) distribution, which possibly contributes to ion and nutrient uptakes. Here, we address the effects of N application on these characteristics to detect how N improves its salt tolerance. Suaeda salsa was subjected to four salt levels (0.5, 1.0, 1.5, and 2.0%) and three N treatments (NO3--N: 0, 0.25, and 0.50 g·kg-1) in soil column experiments. The N applications performed a "dose effect" that significantly enhanced the growth of Suaeda at low salt levels, while negative effects were displayed at high salt levels. Moderate N markedly benefited from Na+ and Cl- uptake, which was approximately 111 mg and 146 mg per plant at a salt level of 1.0%. Exposure to a certain N application significantly enhanced topsoil root length at salt levels of 0.5% and 1.0%, and it was higher by 0.766 m and 1.256 m under N50 treatment than that under N0 treatment, whereas the higher salt levels accelerate subsoil root growth regardless of N treatment. Therefore, its interactive effects on root development and ion uptake were present, which would provide further theoretical basis for improving saline soil amelioration by N application. Regression analysis always showed that topsoil root length generated more positive and significant influences on ion uptake and vegetative growth than total root length. The results suggested that N application is beneficial to salt tolerance by altering root allocation so as to raise its elongation and gather more ions for halophyte in the topsoil.

18.
Plants (Basel) ; 10(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34834724

RESUMEN

Water conditions directly affect plant growth and thus modify reproduction allocation. However, little is known about the transgenerational effects of water conditions on xerophytes. The desert annual Atriplex aucheri produces three types of seeds (A: dormant, ebracteate black seeds; B: dormant, bracteolate black seeds; C: non-dormant, bracteolate brown seeds) on a single plant. The aim of this study was to investigate the effects of low/high water treatment (thereafter progeny water treatment) on aboveground biomass, C:N stoichiometry, and offspring seed characteristics of A. aucheri grown from brown seeds whose mother plants were under low/high water treatment (thereafter maternal water treatment). Progeny water only affected shoot dry weight and seed allocation of type A. Under low progeny water treatment, plants from parents with low maternal water treatment had the lowest biomass. Maternal water did not significantly influence the C and N content, however high maternal water increased the C:N ratio. Maternal water treatment did not significantly affect seed number. However, plants under low maternal and progeny water treatments had the lowest weight for type B seeds. When progeny plants were under low water treatment, seed allocation of type A, type B, and total seed allocation of plants under high maternal water were significantly lower than those of plants under low maternal water. These results indicate that water conditions during the maternal generation can dramatically contribute to progeny seed variation, but the transgenerational effects depend on the water conditions of progeny plants.

19.
Front Plant Sci ; 12: 671157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220893

RESUMEN

On degraded land in arid regions, cultivation of Apocynum species can provide significant environmental benefits by preventing soil erosion and desertification. Furthermore, Apocynum venetum and Apocynum pictum, which are mainly distributed in salt-barren lands in the northwestern region of China, are traditionally used to produce natural fiber and herbal tea. Direct sowing of both species may encounter various abiotic stresses such as drought and salinity. However, these effects on germination remain largely unknown, especially for seeds with different storage periods. The aim of this study was to evaluate the effects of storage period, light condition, temperature regime, drought, and salinity on germination performances of both species. Germination experiment was carried out in November 2017. There were four replicates for each treatment, and each petri dish contained 25 seeds. The results indicated that prolongation of storage period significantly decreased the germination percentage and velocity, especially under abiotic stresses. Light did not affect seed germination of A. venetum and A. pictum under any conditions. Seeds had better germination performance at 10/25 and 15/30°C than those of seeds incubated at any other temperatures. With the increase of polyethylene glycol (PEG) and salinity concentrations, seed germination for both species gradually decreased, especially for seeds stored for 2 years. Low PEG (0-20%) and salinity concentration (0-200 mM) did not significantly affect germination percentage of freshly matured seeds. However, long-time storage significantly decreased drought and salinity tolerance in A. venetum and A. pictum during germination stage. For saline soils in arid and semi-arid regions, freshly matured seeds or 1-year-stored seeds of both Apocynum species are recommended to be sown by using drip-irrigation in spring.

20.
Front Plant Sci ; 12: 677767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234797

RESUMEN

Halophytes are capable of resisting salinity, and their root system is the part in direct contact with the saline soil environment. The aim of this study was to compare the responses of root morphology and rhizosphere characteristics to salinity between a halophyte, Suaeda salsa (suaeda), and a glycophyte, Beta vulgaris L. (sugar beet). The soil salt content was set to four levels (0.7, 1.2, 1.7, and 2.7%) by NaCl-treated plants. We investigated the soil pH, EC, nutrients and soil, plant ion (Na+, Cl-, K+, and Mg2+) concentration to evaluate the rhizospheric processes, and salt tolerance of suaeda by the root mat method. The highest biomass was in the 1.2% salt level for suaeda and in the 0.7% salt level for sugar beet. The root length and root surface area of suaeda showed similar trends to biomass, but the root diameter decreased by 11.5-17.9% with higher salinity. The Na+, Cl-, and K+ accumulations in the shoot of suaeda displayed higher than that in sugar beet, while the Mg2+ accumulation was lower in suaeda than that in sugar beet. High salinity resulted in increased pH and EC values in the rhizosphere for suaeda, but lower values of these parameters for sugar beet. Under high salinity, the Olsen phosphorus content was 0.50 g·kg-1 and 0.99 g·kg-1 higher in the rhizosphere than in the non-rhizosphere for suaeda and sugar beet. We concluded that the two species [halophyte, Suaeda salsa (suaeda), and a glycophyte, B. vulgaris L. (sugar beet)] showed diverse approaches for nutrient absorption under salinity stress. Suaeda altered its root morphology (smaller root diameter and longer roots) under salt stress to increase the root surface area, while sugar beet activated rhizospheric processes to take up more nutrients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...