Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Biomol Biomed ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217442

RESUMEN

The novel deubiquitinase enzyme, motif interacting with ubiquitin-containing novel DUB family-1 (MINDY1), is highly expressed in liver cancer tissues and plays a crucial role in maintaining the stemness of liver cancer cells. Programmed death ligand-1 (PD-L1) is an immunosuppressive molecule overexpressed by tumour cells. The potential role of MINDY1 in inhibiting the stemness of liver cancer cells by deubiquitinating PD-L1 has not yet been reported. To investigate the mechanism by which MINDY1 mediates immune escape in liver cancer through the regulation of PD-L1 ubiquitination, we examined the expression levels of MINDY1 and PD-L1 in liver cancer and adjacent tissues from 50 hepatocellular carcinoma (HCC) patients using protein imprinting and immunohistochemistry. We analyzed the relationship between the expression levels of MINDY1 and PD-L1 in liver cancer tissues and their correlation with the 5-year tumor-free survival rates of patients. Subsequently, MINDY1 expression was knocked down in Huh7 cells using small interfering RNA (siRNA) interference or upregulated through transfection with a MINDY1 overexpression plasmid. The effects of MINDY1 knockdown or overexpression on the proliferation, apoptosis, migration, and invasion of HCC cells, as well as the regulation of PD-L1 binding and ubiquitination, were assessed. The 5-year tumor-free survival rates were significantly lower in both the high MINDY1 expression group and the high PD-L1 expression group (χ2 = 4.919 and 13.158, respectively). A significant difference in survival was observed between the high and low MINDY1 expression groups (χ2= 27.415). MINDY1 was found to directly interact with PD-L1, with MINDY1 gene knockdown promoting PD-L1 ubiquitination and MINDY1 overexpression inhibiting PD-L1 ubiquitination. All comparisons yielded statistically significant results (P < 0.05). In conclusion, MINDY1 inhibits the malignant progression of liver cancer by inhibiting PD-L1 ubiquitination and mediating immune escape.

2.
Adv Sci (Weinh) ; : e2404904, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225541

RESUMEN

Most deaths in breast cancer patients are attributed to metastasis, and lung metastasis is associated with a particularly poor prognosis; therefore it is imperative to identify potential target for intervention. The transforming growth factor-ß (TGF-ß) pathway plays a vital role in breast cancer metastasis, in which Smad3 is the key mediator and performs specific functions by binding with different cofactors. However, Smad3 cofactors involved in lung metastasis have not yet been identified. This study first establishes the interactome of Smad3 in breast cancer cells and identifies ZNF8 as a novel Smad3 cofactor. Furthermore, the results reveal that ZNF8 is closely associated with breast cancer lung metastasis prognosis, and specifically facilitates TGF-ß pathway-mediated breast cancer lung metastasis by participating in multiple processes. Mechanistically, ZNF8 binds with Smad3 to enhance the H3K4me3 modification and promote the expression of lung metastasis signature genes by recruiting SMYD3. SMYD3 inhibition by BCI121 effectively prevents ZNF8-mediated lung metastasis. Overall, the study identifies a novel cofactor of TGF-ß/Smad3 that promotes lung metastasis in breast cancer and introduces potential therapeutic strategies for the early management of breast cancer lung metastasis.

3.
Plant J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259840

RESUMEN

Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively. GhHD1, a previously characterized candidate gene, was identified on LPA1 and encodes an HD-Zip transcription factor. For LPA2 and LPA3, we identified two candidate genes, GhGIR1 and GhGIR2, both encoding proteins with WD40 and RING domains that act as inhibitors of leaf hair formation. Expression analysis revealed that GhHD1 was predominantly expressed in hairy accessions, whereas GhGIR1 and GhGIR2 were expressed in hairless accessions. Silencing GhHD1 or overexpressing GhGIR1 in hairy accessions induced in a hairless phenotype, whereas silencing GhGIR2 in hairless accessions resulted in a hairy phenotype. We also demonstrated that GhHD1 interact with both GhGIR1 and GhGIR2, and GhGIR1 can interact with GhGIR2. Further investigation indicated that GhHD1 functions as a transcriptional activator, binding to the promoters of the GhGIR1 and GhGIR2 to active their expression, whereas GhGIR1 and GhGIR2 can suppress the transcriptional activation of GhHD1. Our findings shed light on the intricate regulatory network involving GhHD1, GhGIR1 and GhGIR2 in the initiation and development of plant epidermal hairs in cotton.

4.
Cell Signal ; 123: 111354, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173856

RESUMEN

p53 is a critical tumor suppressor, and the disruption of its normal function is often a prerequisite for the development or progression of tumors. Our previous works revealed that multiple members of Krüppel-associated box (KRAB) domain zinc-finger proteins (KZFPs) family regulate p53 transcriptional activity by interacting with it. But the tumor biology functions of these members have not been fully elucidated. Here, the pan-cancer analysis related to gastrointestinal cancers (GICs) revealed that ZNF8, a p53-interacting protein, is an unfavorable prognostic factor for patients with malignancies. ZNF8 interacts with p53 and further depresses its transcriptional activity in colon cancer cells. The knockdown of ZNF8 or the overexpression of ZNF8 inhibits or facilitates the in vitro colony formation, migration, invasion, and angiogenesis of p53+/+ colon cancer HCT116 cells, HepG2 cells and EC109 cells rather than p53-/- colon cancer HCT116 cells and p53-knockout HepG2 cells, respectively. Xenograft experiments conducted in vivo also showed that the knockdown of ZNF8 in p53+/+ but not in p53-/- HCT116 cells curbs the tumor growth and metastasis to lung, leading to an extended life span for tumor-bearing mice. Clinically, two independent immunohistochemistry cohorts of colon cancer and esophageal cancer also indicated that ZNF8 is higher expression in carcinoma tissues than adjacent tissues and this is associated with worse overall survival outcomes in patients without harboring p53 mutation. Together, our results provide insight into the p53-specific tumor oncogenic function of ZNF8. ZNF8 may prove to be a potential target for GICs treatment.


Asunto(s)
Neoplasias Gastrointestinales , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ratones , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/genética , Progresión de la Enfermedad , Movimiento Celular , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Línea Celular Tumoral , Proliferación Celular , Células Hep G2 , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Femenino
5.
Mucosal Immunol ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074614

RESUMEN

Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in preterm infants and the most common cause of neonatal death, whereas the molecular mechanism of intestinal injury remains unclear accompanied by deficiency of effective therapeutic approaches. GIT2 (G-protein-coupled receptor kinase interacting proteins 2) can affect innate and adaptive immunity and has been involved in multiple inflammatory disorders. In this study, we investigated whether GIT2 participates in the pathogenesis of NEC. Here we found that intestinal Git2 gene expression was significantly increased in NEC patients and NEC mice, which positively correlated with the tissue damage severity, and Git2 deficiency could potently protect against NEC development in mice. Mechanistically, Git2 gene knockout dramatically increased the recruitment of MDSCs in the intestine, and in vivo depletion of MDSCs almost completely abrogated the protective effect of Git2 deficiency on NEC. Moreover, Git2 deficiency induced MDSCs intestinal accumulation mainly relied on CXCL1/CXCL12 signaling, as evidenced by the significant increment of CXCL1 and CXCL12 levels in intestinal epithelium of Git2-/- mice and dramatically decrease of MDSCs accumulation in intestine as well as increase of NEC severity upon treatment of CXCL1/CXCL12 pathway inhibitors. In addition, Git2 deficiency induced up-regulation of CXCL1 and CXCL12 is at least partially mediated through activating NF-κB signaling. Thus, our findings suggest that GIT2 is involved in the pathogenesis of NEC, and targeting GIT2 may be a potential preventive and therapeutic approach for NEC.

6.
Ann Gastroenterol Surg ; 8(4): 639-649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957564

RESUMEN

Aim: To evaluate the potential role of serum and tissue hsa_circ_0008621 as a prognostic biomarker for CRC patients. Focused on the functional role of hsa_circ_0008621 in colorectal cancer (CRC). Methods: Serum and tissue hsa_circ_0008621 expression were quantified by qRT-PCR in 157 CRC patients, as well as 100 serums from healthy controls. Serum and tissue hsa_circ_0008621 expression was evaluated for their prognostic role in CRC patients using Kaplan-Meier curves and Multivariate Cox proportional hazards analysis. To further characterize the biological role of hsa_circ_0008621 expression in CRC, in vitro hsa_circ_0008621 inhibition was performed and the effects on cellular growth, migration, invasion, apoptosis, and glycolysis were explored. Next, the downstream molecules for hsa_circ_0008621 were predicted. Results: Hsa_circ_0008621 expression was significantly upregulated in CRC tissues and serums. Serum hsa_circ_0008621 levels were significantly up-regulated in advanced-staged samples. High serum hsa_circ_0008621 expression was associated with shorter overall survival and recurrence-free survival in CRC patients. Multivariate Cox regression analysis identified a high level of serum hsa_circ_0008621 expression as an independent prognostic factor with respect to overall survival and recurrence-free survival. Loss of function assays for hsa_circ_0008621 in vitro led to a significant decrease in cell proliferation, migration, invasion, and glycolysis, but an increase in cell apoptosis. Hsa_circ_0008621 can sponge miR-532-5p, which targets SLC16A3. Conclusion: High level of serum hsa_circ_0008621 is associated with poor survival in CRC and promotes CRC progression, suggesting it to be a promising non-invasive prognostic biomarker and novel therapeutic target in CRC patients.

7.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999579

RESUMEN

Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.

8.
RSC Adv ; 14(31): 22420-22433, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39010908

RESUMEN

Traditional bone tissue engineering techniques require the extraction and proliferation of seed cells, followed by prolonged in vitro culture to form bone tissue constructs. In contrast, in situ mineralization bone tissue engineering utilizes alkaline phosphatase within the body's microenvironment to induce scaffold mineralization. This approach promotes further proliferation and differentiation of osteoblasts and the formation of bone tissue constructs, thereby simplifying the traditional bone tissue engineering process. This study uses electrospinning technology to prepare a novel biologically active scaffold for bone tissue engineering using poly(lactic-co-glycolic acid) (PLGA) and calcium glycerophosphate. The morphology and composition of the scaffolds were characterized using SEM, EDS, and XRD, revealing well-defined fibrous structures and the successful incorporation of calcium glycerophosphate into the PLGA fibers. In vitro simulation of the bone microenvironment using alkaline phosphatase effectively catalyzed the in situ mineralization of calcium glycerophosphate within the scaffold. SEM observations showed substantial mineral aggregation on the surface of the fibrous membranes, and XRD characterization confirmed that the diffraction peaks of the minerals correspond to hydroxyapatite. The cytotoxicity, cell proliferation, and osteogenic differentiation assessments on MC3T3-E1 pre-osteoblasts cultured on the prepared scaffolds indicate that the scaffolds are non-toxic to cells and possess good osteogenic differentiation ability, enabling in situ mineralization. This suggests that the scaffolds have broad prospects for application in bone defect repair.

9.
Int J Biol Sci ; 20(8): 2814-2832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904028

RESUMEN

Stable infiltration of myeloid cells, especially tumor-associated M2 macrophages, acts as one of the essential features of the tumor immune microenvironment by promoting the malignant progression of hepatocellular carcinoma (HCC). However, the factors affecting the infiltration of M2 macrophages are not fully understood. In this study, we found the molecular subtypes of HCC with the worst prognosis are characterized by immune disorders dominated by myeloid cell infiltration. Myeloid cell nuclear differentiation antigen (MNDA) was significantly elevated in the most aggressive subtype and exhibited a positively correlation with M2 infiltration and HCC metastasis. Moreover, MNDA functioned as an independent prognostic predictor and has a good synergistic effect with some existing prognostic clinical indicators. We further confirmed that MNDA was primarily expressed in tumor M2 macrophages and contributed to the enhancement of its polarization by upregulating the expression of the M2 polarization enhancers. Furthermore, MNDA could drive the secretion of M2 macrophage-derived pro-metastasis proteins to accelerate HCC cells metastasis both in vivo and in vitro. In summary, MNDA exerts a protumor role by promoting M2 macrophages polarization and HCC metastasis, and can serve as a potential biomarker and therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Macrófagos , Células Mieloides , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Macrófagos/metabolismo , Células Mieloides/metabolismo , Animales , Línea Celular Tumoral , Ratones , Masculino , Microambiente Tumoral , Femenino , Metástasis de la Neoplasia
10.
Curr Issues Mol Biol ; 46(5): 4004-4020, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38785515

RESUMEN

Alternative splicing has been shown to participate in tumor progression, including hepatocellular carcinoma. The poor prognosis of patients with HCC calls for molecular classification and biomarker identification to facilitate precision medicine. We performed ssGSEA analysis to quantify the pathway activity of RNA splicing in three HCC cohorts. Kaplan-Meier and Cox methods were used for survival analysis. GO and GSEA were performed to analyze pathway enrichment. We confirmed that RNA splicing is significantly correlated with prognosis, and identified an alternative splicing-associated protein LUC7L3 as a potential HCC prognostic biomarker. Further bioinformatics analysis revealed that high LUC7L3 expression indicated a more progressive HCC subtype and worse clinical features. Cell proliferation-related pathways were enriched in HCC patients with high LUC7L3 expression. Consistently, we proved that LUC7L3 knockdown could significantly inhibit cell proliferation and suppress the activation of associated signaling pathways in vitro. In this research, the relevance between RNA splicing and HCC patient prognosis was outlined. Our newly identified biomarker LUC7L3 could provide stratification for patient survival and recurrence risk, facilitating early medical intervention before recurrence or disease progression.

11.
J Cancer Res Clin Oncol ; 150(5): 276, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796816

RESUMEN

PURPOSE: Colorectal cancer (CRC) refers to high-mortality tumors arising in the colon or rectum with a high rate of recurrence. The involvement of long non-coding RNAs (lncRNAs) contributes to the treatment and prognosis evaluation of CRC, and brings a new direction for the radical cure of patients. To identify the pathological mechanism and regulation of lncRNA LINC01128 (LINC01128) on CRC cells, and analyze its potential prognostic value. METHODS: LINC01128 level in tissue and cell specimens from 122 CRC patients was evaluated by RT-qPCR. The clinical significance and prognostic value of LINC01128 in CRC were analyzed via Kaplan-Meier and Cox analysis. CCK8 and Transwell assays were used to study the function of LINC01128 in vitro. The relationship between LINC01128 and miR-363-3p was confirmed by luciferase reporter gene assay. RESULTS: The overexpression of LINC01128 is associated with TNM stage and lymph node metastasis in CRC patients. Silencing LINC01128 inhibited the proliferation and metastasis of CRC cells. In addition, LINC01128 directly targeted and negatively regulated the miR-363-3p expression, while miR-363-3p inhibitor restored the inhibitory function of LINC01128. CONCLUSION: As an independent prognostic factor of CRC, upregulation of LINC01128 predicts poor prognosis and accelerates tumor deterioration through miR-363-3p.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Regulación hacia Arriba , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ARN Largo no Codificante/genética , MicroARNs/genética , Pronóstico , Masculino , Proliferación Celular/genética , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Metástasis Linfática/genética , Anciano
12.
Plant Cell Rep ; 43(6): 140, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740586

RESUMEN

KEY MESSAGE: The utilization of transcriptome analysis, functional validation, VIGS, and DAB techniques have provided evidence that GhiPLATZ17 and GhiPLATZ22 play a pivotal role in improving the salt tolerance of upland cotton. PLATZ (Plant AT-rich sequences and zinc-binding proteins) are known to be key regulators in plant growth, development, and response to salt stress. In this study, we comprehensively analyzed the PLATZ family in ten cotton species in response to salinity stress. Gossypium herbaceum boasts 25 distinct PLATZ genes, paralleled by 24 in G. raimondii, 25 in G. arboreum, 46 in G. hirsutum, 48 in G. barbadense, 43 in G. tomentosum, 67 in G. mustelinum, 60 in G. darwinii, 46 in G. ekmanianum, and a total of 53 PLATZ genes attributed to G. stephensii. The PLATZ gene family shed light on the hybridization and allopolyploidy events that occurred during the evolutionary history of allotetraploid cotton. Ka/Ks analysis suggested that the PLATZ gene family underwent intense purifying selection during cotton evolution. Analysis of synteny and gene collinearity revealed a complex pattern of segmental and dispersed duplication events to expand PLATZ genes in cotton. Cis-acting elements and gene expressions revealed that GhiPLATZ exhibited salt stress resistance. Transcriptome analysis, functional validation, virus-induced gene silencing (VIGS), and diaminobenzidine staining (DAB) demonstrated that GhiPLATZ17 and GhiPLATZ22 enhance salt tolerance in upland cotton. The study can potentially advance our understanding of identifying salt-resistant genes in cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Tolerancia a la Sal , Factores de Transcripción , Gossypium/genética , Gossypium/fisiología , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Filogenia , Sintenía/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica
13.
J Affect Disord ; 359: 70-77, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735580

RESUMEN

BACKGROUND: The triglyceride glucose (TyG) index, a novel surrogate indicator for insulin resistance (IR), is believed to be associated with various diseases. However, its connection with cognitive decline remains controversy. METHODS: The PubMed, EMBASE, Cochrane Library, Web of Science, and Medline databases were systematically searched up to October 2023 to assess the association between the TyG index and the risk of cognitive decline. Effect estimates and 95 % confidence intervals (CIs) were calculated using a random-effects model. RESULTS: Our review included 3 cohort studies and 9 case-control/cross-sectional studies with a total of 5,603,350 participants. In comparison to a low TyG index, a higher TyG index was connected to an elevated risk of cognitive decline (RR/HR = 1.14, 95 % CI [1.11, 1.17], P < 0.05; OR = 1.75, 95 % CI [1.34, 2.29], P < 0.05). Furthermore, the dose-response analysis from the case-control/cross-sectional studies revealed a 1.42 times higher risk of cognitive decline per 1 mg/dl increment of the TyG index (OR = 1.42, 95 % CI [1.19, 1.69], P < 0.05). LIMITATIONS: The inclusion of observational studies in the meta-analysis demonstrated a lower hierarchy of evidence compared to randomized controlled trials. Moreover, we incorporated a restricted number of studies and identified significant heterogeneity among them, potentially attributed to the presence of numerous confounding variables. CONCLUSION: TyG index is related to cognitive decline. In view of some of the limitations of this study, further research will be necessary to confirm this relationship.


Asunto(s)
Glucemia , Disfunción Cognitiva , Resistencia a la Insulina , Triglicéridos , Femenino , Humanos , Masculino , Glucemia/análisis , Disfunción Cognitiva/sangre , Estudios Transversales , Factores de Riesgo , Triglicéridos/sangre
14.
Sci Data ; 11(1): 477, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724643

RESUMEN

Gossypium purpurascens is a member of the Malvaceae family, holds immense economic significance as a fiber crop worldwide. Abiotic stresses harm cotton crops, reduce yields, and cause economic losses. Generating high-quality reference genomes and large-scale transcriptomic datasets across diverse conditions can offer valuable insights into identifying preferred agronomic traits for crop breeding. The present research used leaf tissues to conduct PacBio Iso-seq and RNA-seq analysis. We carried out an in-depth analysis of DEGs using both correlations with cluster analysis and principal component analysis. Additionally, the study also involved the identification of both lncRNAs and CDS. We have prepared RNA-seq libraries from 75 RNA samples to study the effects of drought, salinity, alkali, and saline-alkali stress, as well as control conditions. A total of 454.06 Gigabytes of transcriptome data were effectively validated through the identification of differentially expressed genes and KEGG and GO analysis. Overwhelmingly, gene expression profiles and full-length transcripts from cotton tissues will aid in understanding the genetic mechanism of abiotic stress tolerance in G. purpurascens.


Asunto(s)
Gossypium , RNA-Seq , Estrés Fisiológico , Transcriptoma , Gossypium/genética , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Salinidad , ARN de Planta/genética , Hojas de la Planta/genética
15.
BMC Pharmacol Toxicol ; 25(1): 30, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650035

RESUMEN

BACKGROUND: Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS: In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS: In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS: Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.


Asunto(s)
Asma , Isoflavonas , Linfocitos , Macrófagos , Ratones Endogámicos BALB C , Ovalbúmina , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Células RAW 264.7 , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Inmunidad Innata/efectos de los fármacos , Femenino , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Interleucina-33
16.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256933

RESUMEN

PROTAC is a rapidly developing engineering technology for targeted protein degradation using the ubiquitin-proteasome system, which has promising applications for inflammatory diseases, neurodegenerative diseases, and malignant tumors. This paper gives a brief overview of the development and design principles of PROTAC, with a special focus on PROTAC-based explorations in recent years aimed at achieving controlled protein degradation and improving the bioavailability of PROTAC, as well as TPD technologies that use other pathways such as autophagy and lysosomes to achieve targeted protein degradation.

17.
Eur Radiol ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37964049

RESUMEN

OBJECTIVE: To establish an automated, multitask, MRI-based deep learning system for the detailed evaluation of supraspinatus tendon (SST) injuries. METHODS: According to arthroscopy findings, 3087 patients were divided into normal, degenerative, and tear groups (groups 0-2). Group 2 was further divided into bursal-side, articular-side, intratendinous, and full-thickness tear groups (groups 2.1-2.4), and external validation was performed with 573 patients. Visual geometry group network 16 (VGG16) was used for preliminary image screening. Then, the rotator cuff multitask learning (RC-MTL) model performed multitask classification (classifiers 1-4). A multistage decision model produced the final output. Model performance was evaluated by receiver operating characteristic (ROC) curve analysis and calculation of related parameters. McNemar's test was used to compare the differences in the diagnostic effects between radiologists and the model. The intraclass correlation coefficient (ICC) was used to assess the radiologists' reliability. p < 0.05 indicated statistical significance. RESULTS: In the in-group dataset, the area under the ROC curve (AUC) of VGG16 was 0.92, and the average AUCs of RC-MTL classifiers 1-4 were 0.99, 0.98, 0.97, and 0.97, respectively. The average AUC of the automated multitask deep learning system for groups 0-2.4 was 0.98 and 0.97 in the in-group and out-group datasets, respectively. The ICCs of the radiologists were 0.97-0.99. The automated multitask deep learning system outperformed the radiologists in classifying groups 0-2.4 in both the in-group and out-group datasets (p < 0.001). CONCLUSION: The MRI-based automated multitask deep learning system performed well in diagnosing SST injuries and is comparable to experienced radiologists. CLINICAL RELEVANCE STATEMENT: Our study established an automated multitask deep learning system to evaluate supraspinatus tendon (SST) injuries and further determine the location of SST tears. The model can potentially improve radiologists' diagnostic efficiency, reduce diagnostic variability, and accurately assess SST injuries. KEY POINTS: • A detailed classification of supraspinatus tendon tears can help clinical decision-making. • Deep learning enables the detailed classification of supraspinatus tendon injuries. • The proposed automated multitask deep learning system is comparable to radiologists.

18.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958377

RESUMEN

Hepatocellular carcinoma (HCC) accounts for over 80% of cases among liver cancer, with high incidence and poor prognosis. Thus, it is of valuable clinical significance for discovery of potential biomarkers and drug targets for HCC. In this study, based on the proteomic profiling data of paired early-stage HCC samples, we found that RNF149 was strikingly upregulated in tumor tissues and correlated with poor prognosis in HCC patients, which was further validated by IHC staining experiments of an independent HCC cohort. Consistently, overexpression of RNF149 significantly promoted cell proliferation, migration, and invasion of HCC cells. We further proved that RNF149 stimulated HCC progression via its E3 ubiquitin ligase activity, and identified DNAJC25 as its new substrate. In addition, bioinformatics analysis showed that high expression of RNF149 was correlated with immunosuppressive tumor microenvironment (TME), indicating its potential role in immune regulation of HCC. These results suggest that RNF149 could exert protumor functions in HCC in dependence of its E3 ubiquitin ligase activity, and might be a potential prognostic marker and therapeutic target for HCC treatment.

19.
Cell Biosci ; 13(1): 186, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789469

RESUMEN

BACKGROUND: High-fat diet (HFD) is closely associated with the increased prevalence of inflammatory bowel disease (IBD). Excessive gut microbial metabolite deoxycholic acid (DCA) caused by HFD plays significant roles in eliciting intestinal inflammation, however, the mechanism underlining the induction of inflammatory response by DCA has not been fully elucidated. The purpose of this study was to investigate the role of DCA in the triggering of inflammation via affecting CD4+ T cell differentiation. RESULTS: Murine CD4+T cells were cultured under Th1, Th2 or Th17-polarizing conditions treated with or without different dosage of DCA, and flowcytometry was conducted to detect the effect of DCA on CD4+ T cell differentiation. Alteration of gene expression in CD4+ T cells upon DCA treatment was determined by RNA-sequencing and qRT-PCR. Bioinformatic analysis, cholesterol metabolic profiling, ChIP assay and immuno-fluorescent staining were further applied to explore the DCA-regulated pathway that involved in CD4+T cell differentiation. The results showed that DCA could dose-dependently promote the differentiation of CD4+ T cell into Th17 linage with pathogenic signature. Mechanistically, DCA stimulated the expression of cholesterol biosynthetic enzymes CYP51 and led to the increased generation of endogenous RORγt agonists, including zymosterol and desmosterol, therefore facilitating Th17 differentiation. Up-regulation of CYP51 by DCA was largely mediated via targeting transcription factor SREBP2 and at least partially through bile acid receptor TGR5. In addition, DCA-supplemented diet significantly increased intestinal Th17 cell infiltration and exacerbated TNBS-induced colitis. Administration of cholestyramine to eliminate fecal bile acid obviously alleviated colonic inflammation accompanied by decreased Th17 cells in HFD-fed mice. CONCLUSIONS: Our data establish a link between DCA-induced cholesterol biosynthesis in immune cells and gut inflammation. Modulation of bile acid level or targeting cholesterol metabolic pathway may be potential therapeutic measurements for HFD-related colitis.

20.
Oncol Rep ; 50(5)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37800629

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the western blotting data shown in Fig. 5C, and the cell migration and invasion data shown in Figs. 3C and D and 6B and C were strikingly similar to data that had already appeared in other articles. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 38: 3071­3077, 2017; DOI: 10.3892/or.2017.5956].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...