Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pathol ; 262(3): 334-346, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38180342

RESUMEN

Adenocarcinoma of the bladder is a rare urinary bladder carcinoma with limited therapy options due to lack of molecular characterization. Here, we aimed to reveal the mutational and transcriptomic landscapes of adenocarcinoma of the bladder and assess any relationship with prognosis. Between February 2015 and June 2021, a total of 23 patients with adenocarcinoma of the bladder were enrolled. These included 16 patients with primary bladder adenocarcinomas and seven patients with urachal adenocarcinoma. Whole exome sequencing (16 patients), whole genome sequencing (16 patients), bulk RNA sequencing (RNA-seq) (19 patients), and single-cell RNA-seq (5 patients) were conducted for the specimens. Correlation analysis, survival analysis, and t-tests were also performed. Prevalent T>A substitutions were observed among somatic mutations, and major trinucleotide contexts included 5'-CTC-3' and 5'-CTG-3'. This pattern was mainly contributed by COSMIC signature 22 related to chemical carcinogen exposure (probably aristolochic acid), which has not been reported in bladder adenocarcinoma. Moreover, genes with copy number changes were also enriched in the KEGG term 'chemical carcinogenesis'. Transcriptomic analysis suggested high immune cell infiltration and luminal-like features in the majority of samples. Interestingly, a small fraction of samples with an APOBEC-derived mutational signature exhibited a higher risk of disease progression compared with samples with only a chemical carcinogen-related signature, confirming the molecular and prognostic heterogeneity of bladder adenocarcinoma. This study presents mutational and transcriptomic landscapes of bladder adenocarcinoma, and indicates that a chemical carcinogen-related mutational signature may be related to a better prognosis compared with an APOBEC signature in adenocarcinoma of the bladder. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma , Vejiga Urinaria , Humanos , Vejiga Urinaria/patología , Mutación , Adenocarcinoma/genética , Adenocarcinoma/patología , Carcinógenos , Pronóstico
2.
Ann N Y Acad Sci ; 1517(1): 213-224, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36081327

RESUMEN

Tumor clonal structure is closely related to future progression, which has been mainly investigated as mutation abundance clustering in bulk samples. With relatively limited studies at single-cell resolution, a systematic comparison of the two approaches is still lacking. Here, using bulk and single-cell mutational data from the liver and colorectal cancers, we checked whether co-mutations determined by single-cell analysis had corresponding bulk variant allele frequency (VAF) peaks. While bulk analysis suggested the absence of subclonal peaks and, possibly, neutral evolution in some cases, the single-cell analysis identified coexisting subclones. The overlaps of bulk VAF ranges for co-mutations from different subclones made it difficult to separate them. Complex subclonal structures and dynamic evolution could be hidden under the seemingly clonal neutral pattern at the bulk level, suggesting single-cell analysis is necessary to avoid underestimation of tumor heterogeneity.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Humanos , Neoplasias/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...