Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Front Nutr ; 11: 1381779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595789

RESUMEN

Background: To identify key and shared insulin resistance (IR) molecular signatures across all insulin-sensitive tissues (ISTs), and their potential targeted drugs. Methods: Three datasets from Gene Expression Omnibus (GEO) were acquired, in which the ISTs (fat, muscle, and liver) were from the same individual with obese mice. Integrated bioinformatics analysis was performed to obtain the differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was carried out to determine the "most significant trait-related genes" (MSTRGs). Enrichment analysis and PPI network were performed to find common features and novel hub genes in ISTs. The shared genes of DEGs and genes between DEGs and MSTRGs across four ISTs were identified as key IR therapeutic target. The Attie Lab diabetes database and obese rats were used to verify candidate genes. A medical drug-gene interaction network was conducted by using the Comparative Toxicogenomics Database (CTD) to find potential targeted drugs. The candidate drug was validated in Hepa1-6 cells. Results: Lipid metabolic process, mitochondrion, and oxidoreductase activity as common features were enriched from ISTs under an obese context. Thirteen shared genes (Ubd, Lbp, Hp, Arntl, Cfd, Npas2, Thrsp., Tpx2, Pkp1, Sftpd, Mthfd2, Tnfaip2, and Vnn3) of DEGs across ISTs were obtained and confirmed. Among them, Ubd was the only shared gene between DEGs and MSTRGs across four ISTs. The expression of Ubd was significantly upregulated across four ISTs in obese rats, especially in the liver. The IR Hepa1-6 cell models treated with dexamethasone (Dex), palmitic acid (PA), and 2-deoxy-D-ribose (dRib) had elevated expression of Ubd. Knockdown of Ubd increased the level of p-Akt. A lowing Ubd expression drug, promethazine (PMZ) from CTD analysis rescued the decreased p-Akt level in IR Hepa1-6 cells. Conclusion: This study revealed Ubd, a novel and shared IR molecular signature across four ISTs, as an effective biomarker and provided new insight into the mechanisms of IR. PMZ was a candidate drug for IR which increased p-Akt level and thus improved IR by targeting Ubd and downregulation of Ubd expression. Both Ubd and PMZ merit further clinical translational investigation to improve IR.

2.
Int J Biol Macromol ; 268(Pt 2): 131678, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657921

RESUMEN

BACKGROUND: Glia maturation factor beta (GMFB) is a growth and differentiation factor that acts as an intracellular regulator of signal transduction pathways. The small ubiquitin-related modifier (SUMO) modification, SUMOylation, is a posttranslational modification (PTM) that plays a key role in protein subcellular localization, stability, transcription, and enzymatic activity. Recent studies have highlighted the importance of SUMOylation in the inflammation and progression of numerous diseases. However, the relationship between GMFB and SUMOylation is unclear. RESULTS: Here, we report for the first time that GMFB and SUMO1 are markedly increased in retinal pigment epithelial (RPE) cells at the early stage of diabetes mellitus (DM) under hyperglycemia. The GMFΒ protein could be mono-SUMOylated by SUMO1 at the K20, K35, K58 or K97 sites. SUMOylation of GMFB led to its increased protein stability and subcellular translocation. Furthermore, deSUMOylation of GMFΒ downregulates multiple signaling pathways, including the Jak-STAT signaling pathway, p38 pathway and NF-kappa B signaling pathway. CONCLUSIONS: This work provides novel insight into the role of SUMOylated GMFB in RPE cells and provides a novel therapeutic target for diabetic retinopathy (DR).


Asunto(s)
Hiperglucemia , Estabilidad Proteica , Epitelio Pigmentado de la Retina , Transducción de Señal , Sumoilación , Epitelio Pigmentado de la Retina/metabolismo , Hiperglucemia/metabolismo , Humanos , Células Epiteliales/metabolismo , Línea Celular , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , FN-kappa B/metabolismo , Proteína SUMO-1/metabolismo
3.
J Neuroinflammation ; 21(1): 75, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532410

RESUMEN

BACKGROUND: Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS: In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a ß-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFß1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS: The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of ß-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active ß-catenin labeling. In vitro, Wnt5a/ROR1, active ß-catenin, and some other Wnt signaling molecules were upregulated in the TGFß1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active ß-catenin, as well as the EMT in TGFß1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS: Our study reveals a reciprocal activation between Wnt5a and ß-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.


Asunto(s)
Degeneración Macular , Sulfonamidas , beta Catenina , Humanos , Masculino , Animales , Ratones , beta Catenina/metabolismo , Proteína Wnt-5a , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/metabolismo , Transición Epitelial-Mesenquimal , Degeneración Macular/metabolismo , Fibrosis , ARN Interferente Pequeño/metabolismo
4.
Front Cell Dev Biol ; 12: 1380059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533089

RESUMEN

Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ ß-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 ß-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.

5.
Biochem Mol Biol Educ ; 52(3): 291-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38189805

RESUMEN

The laboratory practice "Primary culture and directional differentiation of rat bone marrow mesenchymal stem cells (BMSCs)" is part of a required course for sophomore medical students at Tongji university, which has been conducted since 2012. Blended learning has been widely applied in medical courses. Based on a student-centered teaching philosophy, we reconstructed a comprehensive stem cell laboratory module with blended learning in 2021, aiming to facilitate students in enhancing their understanding of the multi-lineage differentiation potential of stem cells and improve their experimental skills, self-directed learning ability, and innovative thinking. First, we constructed in-depth online study resources, including videos demonstrating laboratory procedures, a PowerPoint slide deck, and published literature on student self-learning before class. In class, students performed a primary culture of BMSCs, freely chose among adipogenic, osteogenic, or chondrogenic differentiation, and used cytochemical or immunofluorescence staining for identification. After class, the extracurricular part involved performing quantitative polymerase chain reaction to examine the expression of multi-lineage differentiation marker genes, which was designed as an elective. After 2 years of practice, positive feedback was obtained from both students and faculty members who achieved, the learning goal as expected. The reconstructed stem cell laboratory module provides comprehensive practice opportunities for students. Students have a better understanding of BMSC at the molecular, cellular, and functional levels and have improved their experimental skills, which forms a basis for scientific research for medical students. Introducing blended learning into other medical laboratory practices thus seems valuable.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Estudiantes de Medicina , Humanos , Ratas , Animales , Células Madre Mesenquimatosas/citología , Universidades , Aprendizaje , Laboratorios , Educación de Pregrado en Medicina/métodos
6.
Glia ; 72(3): 504-528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37904673

RESUMEN

Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1ß (Il-1ß) in diabetic retinas. Tgf-ß3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-ß3 protein level via the AKT pathway. The protective effect of TGF-ß3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-ß3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-ß3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Degeneración Retiniana , Humanos , Ratas , Animales , Degeneración Retiniana/patología , Células Ependimogliales/metabolismo , Estreptozocina/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta3/efectos adversos , Factor de Crecimiento Transformador beta3/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Gliosis/patología , Retina/metabolismo , Retinopatía Diabética/patología , ARN Mensajero/metabolismo
7.
Stem Cell Res Ther ; 14(1): 281, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784129

RESUMEN

BACKGROUND: T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS: A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS: Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS: Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.


Asunto(s)
Conjuntivitis Alérgica , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Conjuntivitis Alérgica/tratamiento farmacológico , Conjuntivitis Alérgica/patología , Conjuntiva/metabolismo , Conjuntiva/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical
8.
Exp Mol Med ; 55(5): 898-909, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121966

RESUMEN

Excessive osteoclast activation, which depends on dramatic changes in actin dynamics, causes osteoporosis (OP). The molecular mechanism of osteoclast activation in OP related to type 1 diabetes (T1D) remains unclear. Glia maturation factor beta (GMFB) is considered a growth and differentiation factor for both glia and neurons. Here, we demonstrated that Gmfb deficiency effectively ameliorated the phenotype of T1D-OP in rats by inhibiting osteoclast hyperactivity. In vitro assays showed that GMFB participated in osteoclast activation rather than proliferation. Gmfb deficiency did not affect osteoclast sealing zone (SZ) formation but effectively decreased the SZ area by decreasing actin depolymerization. When GMFB was overexpressed in Gmfb-deficient osteoclasts, the size of the SZ area was enlarged in a dose-dependent manner. Moreover, decreased actin depolymerization led to a decrease in nuclear G-actin, which activated MKL1/SRF-dependent gene transcription. We found that pro-osteoclastogenic factors (Mmp9 and Mmp14) were downregulated, while anti-osteoclastogenic factors (Cftr and Fhl2) were upregulated in Gmfb KO osteoclasts. A GMFB inhibitor, DS-30, targeting the binding site of GMFB and Arp2/3, was obtained. Biocore analysis revealed a high affinity between DS-30 and GMFB in a dose-dependent manner. As expected, DS-30 strongly suppressed osteoclast hyperactivity in vivo and in vitro. In conclusion, our work identified a new therapeutic strategy for T1D-OP treatment. The discovery of GMFB inhibitors will contribute to translational research on T1D-OP.


Asunto(s)
Diabetes Mellitus Tipo 1 , Osteoporosis , Ratas , Animales , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/metabolismo , Factor de Maduración de la Glia/farmacología , Actinas/genética , Osteoclastos/metabolismo , Osteoporosis/etiología , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular
9.
Pharmacol Res ; 187: 106559, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403720

RESUMEN

Retinal Müller glial dysfunction and intracellular edema are important mechanisms leading to diabetic macular edema (DME). Aquaporin 11 (AQP11) is primarily expressed in Müller glia with unclear functions. This study aims to explore the role of AQP11 in the pathogenesis of intracellular edema of Müller glia in diabetic retinopathy (DR). Here, we found that AQP11 expression, primarily located at the endfeet of Müller glia, was down-regulated with diabetes progression, accompanied by intracellular edema, which was alleviated by intravitreal injection of lentivirus-mediated AQP11 overexpression. Similarly, intracellular edema of hypoxia-treated rat Müller cell line (rMC-1) was aggravated by AQP11 inhibition, while attenuated by AQP11 overexpression, accompanied by enhanced function in glutamate metabolism and reduced cell death. The down-regulation of AQP11 was also verified in the Müller glia from the epiretinal membranes (ERMs) of proliferative DR (PDR) patients. Mechanistically, down-regulation of AQP11 in DR was mediated by the HIF-1α-dependent and independent miRNA-AQP11 axis. Overall, we deciphered the AQP11 down-regulation, mediated by miRNA-AQP11 axis, resulted in Müller drainage dysfunction and subsequent intracellular edema in DR, which was partially reversed by AQP11 overexpression. Our findings propose a novel mechanism for the pathogenesis of DME, thus targeting AQP11 regulation provides a new therapeutic strategy for DME.


Asunto(s)
Acuaporinas , Diabetes Mellitus , Retinopatía Diabética , Edema Macular , MicroARNs , Ratas , Animales , Retinopatía Diabética/patología , MicroARNs/genética , Regulación hacia Abajo , Acuaporinas/metabolismo
10.
iScience ; 25(10): 105050, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185374

RESUMEN

The hostile microenvironment of the retina in patients with age-related macular degeneration (AMD) may trigger epithelial-to-mesenchymal transition (EMT) of grafted retinal pigment epithelial (RPE) cells, thus attenuating the therapeutic outcome. Here, we transformed human dedifferentiated induced pluripotent stem cell-derived RPE (iPSC-RPE) cells into induced RPE (iRPE) cells using a cocktail of four transcription factors (TFs)-CRX, MITF-A, NR2E1, and C-MYC. These critical TFs maintained the epithelial property of iRPE cells by regulating the expression of bmp7, forkhead box f2, lin7a, and pard6b, and conferred resistance to TGF-ß-induced EMT in iRPE cells by targeting ppm1a. The iRPE cells with Tet-on system-regulated c-myc expression exhibited EMT resistance and better therapeutic function compared with iPSC-RPE cells in rat AMD model. Our study demonstrates that endowing RPE cells with anti-EMT property avoids the risk of EMT after cells are grafted into the subretinal space, and it may provide a suitable candidate for AMD treatment.

11.
Cell Death Dis ; 13(9): 785, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096985

RESUMEN

Age-related macular degeneration (AMD) is a major vision-threatening disease. Although mesenchymal stem cells (MSCs) exhibit beneficial neural protective effects, their limited differentiation capacity in vivo attenuates their therapeutic function. Therefore, the differentiation of MSCs into retinal pigment epithelial (RPE) cells in vitro and their subsequent transplantation into the subretinal space is expected to improve the outcome of cell therapy. Here, we transdifferentiated human umbilical cord MSCs (hUCMSCs) into induced RPE (iRPE) cells using a cocktail of five transcription factors (TFs): CRX, NR2E1, C-MYC, LHX2, and SIX6. iRPE cells exhibited RPE specific properties, including phagocytic ability, epithelial polarity, and gene expression profile. In addition, high expression of PTPN13 in iRPE cells endows them with an epithelial-to-mesenchymal transition (EMT)-resistant capacity through dephosphorylating syntenin1, and subsequently promoting the internalization and degradation of transforming growth factor-ß receptors. After grafting into the subretinal space of the sodium iodate-induced rat AMD model, iRPE cells demonstrated a better therapeutic function than hUCMSCs. These results suggest that hUCMSC-derived iRPE cells may be promising candidates to reverse AMD pathophysiology.


Asunto(s)
Degeneración Macular , Células Madre Mesenquimatosas , Degeneración Retiniana , Animales , Células Epiteliales/metabolismo , Humanos , Proteínas con Homeodominio LIM/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/terapia , Células Madre Mesenquimatosas/metabolismo , Ratas , Degeneración Retiniana/metabolismo , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Factores de Transcripción/metabolismo , Cordón Umbilical/metabolismo
12.
J Tissue Eng ; 13: 20417314221122123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093432

RESUMEN

To study the biological functions and applications of human amniotic epithelial cell-derived extracellular vesicles (hAEC-EVs), the cargos of hAEC-EVs were analyzed using miRNA sequencing and proteomics analysis. The hAECs and hAEC-EVs in this study had specific characteristics. Multi-omics analyses showed that extracellular matrix (ECM) reorganization, inhibition of excessive myofibroblasts, and promotion of target cell adhesion to the ECM were their primary functions. We evaluated the application of hAEC-EVs for corneal alkali burn healing in rabbits and elucidated the fundamental mechanisms. Slit-lamp images revealed that corneal alkali burns induced central epithelial loss, stromal haze, iris, and pupil obscurity in rabbits. Slit-lamp examination and histological findings indicated that hAEC-EVs facilitated re-epithelialization of the cornea after alkali burns, reduced scar formation and promoted the restoration of corneal tissue transparency. Significantly fewer α-SMA-positive myofibroblasts were observed in the hAEC-EV-treated group than the PBS group. HAEC-EVs effectively promoted the proliferation and migration of hCECs and hCSCs in vitro and activated the focal adhesion signaling pathway. We demonstrated that hAEC-EVs were excellent cell-free candidates for the treatment of ECM lesion-based diseases, including corneal alkali burns. HAEC-EVs promoted ECM reorganization and cell adhesion of target tissues or cells via orderly activation of the focal adhesion signaling pathway.

13.
Exp Eye Res ; 223: 109207, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926646

RESUMEN

Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-ß-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.


Asunto(s)
Transición Epitelial-Mesenquimal , Degeneración Macular , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Dasatinib/farmacología , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Degeneración Macular/metabolismo , Quercetina/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Factor de Crecimiento Transformador beta/metabolismo
14.
Front Oncol ; 12: 880100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860559

RESUMEN

Kidney renal clear cell carcinoma (KIRC) has the highest mortality rate and potential for invasion among renal cancers. The diagnosis and treatment of KIRC are becoming challenging because of its diverse pathogenic mechanisms. Glia (GMFB) is a highly conserved growth and differentiation factor for glia cells and neurons, and it is closely associated with neurodegenerative diseases. However, its role in KIRC remains unknown. The present study integrated bioinformatics approaches with suitable meta-analyses to determine the position of GMFB in KIRC. There was a significant decrease in Gmfb expression in KIRC kidneys compared with normal controls. Gmfb expression was negatively associated with pathologic stage, T and M stages, and histologic grade. Univariate and multivariate analyses showed that elevated Gmfb expression was an independent factor for a favorable prognosis. Furthermore, the nomogram verified that Gmfb is a low-risk factor for KIRC. Knockdown of Gmfb in Caki-2 cells increased viability and decreased p21 and p27 levels. Overexpression of Gmfb inhibited Caki-2 cell proliferation, migration, and invasion and decreased mitochondrial membrane potential. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses considering Gmfb co-expressed differentially expressed genes (DEGs) showed that collecting duct acid secretion and mineral absorption ranked were the most important upregulated and downregulated DEGs, respectively. The upregulated hub genes for DEGs were mainly involved in nucleosome assembly, nucleosome organization, and chromatin assembly, and the downregulated hub genes were primarily associated with keratinization. The ratio of tumor-infiltrating immune cells in KIRC tissues was evaluated using CIBERSORTx. The results showed that the Gmfb expression was significantly positively correlated with macrophage M2 cells and mast resting cell infiltration levels and negatively correlated with T follicular helper, T regulatory, and B plasma cell infiltration levels. The former cell types were associated with a beneficial outcome, while the latter had a worse outcome in patients with KIRC. In summary, this study identified GMFB as a novel independent biomarker and therapeutic target for KIRC, and it provides a helpful and distinct individualized treatment strategy for KIRC with a combination of molecular targets and tumor microenvironment.

15.
Front Endocrinol (Lausanne) ; 13: 843721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432190

RESUMEN

Diabetic kidney disease (DKD) is a long-term major microvascular complication of uncontrolled hyperglycemia and one of the leading causes of end-stage renal disease (ESDR). The pathogenesis of DKD has not been fully elucidated, and effective therapy to completely halt DKD progression to ESDR is lacking. This study aimed to identify critical molecular signatures and develop novel therapeutic targets for DKD. This study enrolled 10 datasets consisting of 93 renal samples from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). Networkanalyst, Enrichr, STRING, and Cytoscape were used to conduct the differentially expressed genes (DEGs) analysis, pathway enrichment analysis, protein-protein interaction (PPI) network construction, and hub gene screening. The shared DEGs of type 1 diabetic kidney disease (T1DKD) and type 2 diabetic kidney disease (T2DKD) datasets were performed to identify the shared vital pathways and hub genes. Strepotozocin-induced Type 1 diabetes mellitus (T1DM) rat model was prepared, followed by hematoxylin & eosin (HE) staining, and Oil Red O staining to observe the lipid-related morphological changes. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to validate the key DEGs of interest from a meta-analysis in the T1DKD rat. Using meta-analysis, 305 shared DEGs were obtained. Among the top 5 shared DEGs, Tmem43, Mpv17l, and Slco1a1, have not been reported relevant to DKD. Ketone body metabolism ranked in the top 1 in the KEGG enrichment analysis. Coasy, Idi1, Fads2, Acsl3, Oxct1, and Bdh1, as the top 10 down-regulated hub genes, were first identified to be involved in DKD. The qRT-PCR verification results of the novel hub genes were mostly consistent with the meta-analysis. The positive Oil Red O staining showed that the steatosis appeared in tubuloepithelial cells at 6 w after DM onset. Taken together, abnormal ketone body metabolism may be the key factor in the progression of DKD. Targeting metabolic abnormalities of ketone bodies may represent a novel therapeutic strategy for DKD. These identified novel molecular signatures in DKD merit further clinical investigation.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Femenino , Humanos , Cetonas/metabolismo , Cetonas/uso terapéutico , Riñón/metabolismo , Metabolismo de los Lípidos , Masculino , Proteínas de la Membrana/metabolismo , Mapas de Interacción de Proteínas/genética , Ratas
16.
Front Immunol ; 13: 831660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371022

RESUMEN

Microglial activation and melatonin protection have been reported in diabetic retinopathy (DR). Whether melatonin could regulate microglia to protect the inner blood-retinal barrier (iBRB) remains unknown. In this study, the role of microglia in iBRB breakdown and the mechanisms of melatonin's regulation on microglia were explored. In diabetic rat retinas, activated microglia proliferated and migrated from the inner retina to the outer retina, accompanied by the obvious morphological changes. Meanwhile, significant leakage of albumin was evidenced at the site of close interaction between activated microglia and the damaged pericytes and endothelial cells. In vitro, inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, and arginase-1 (Arg-1), were increased significantly in CoCl2-treated BV2 cells. The supernatant derived from CoCl2-treated BV2 cells significantly decreased the cell viability and disrupted the junctional proteins in both pericytes and endothelial cells, resulting in severe leakage. Melatonin suppressed the microglial overactivation, i.e., decreasing the cell number and promoting its anti-inflammatory properties in diabetic rat retinas. Moreover, the leakage of iBRB was alleviated and the pericyte coverage was restored after melatonin treatment. In vitro, when treated with melatonin in CoCl2-treated BV2 cells, the inflammatory factors were decreased, while the anti-inflammatory factors were increased, further reducing the pericyte loss and increasing the tight junctions. Melatonin deactivated microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways, thus maintaining the integrity of iBRB. The present data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of melatonin in the treatment of DR by regulating microglia.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Melatonina , Animales , Barrera Hematorretinal/metabolismo , Diabetes Mellitus/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Microglía/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
17.
Stem Cell Res Ther ; 13(1): 136, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365237

RESUMEN

PURPOSE: To explore the function and regulatory mechanism of IFITM3 in mouse neural retinal progenitor cells (mNRPCs), which was found to be very important not only in the development of the retina in embryos but also in NRPCs after birth. METHODS: Published single-cell sequencing data were used to analyze IFITM3 expression in mNRPCs. RNA interference was used to knock down the expression of IFITM3. CCK-8 assays were used to analyze cell viability. RNA-seq was used to assess mRNA expression, as confirmed by real-time quantitative PCR, and immunofluorescence assays and western blots were used to validate the levels of relative proteins, and autophagy flux assay. Lysosomal trackers were used to track the organelle changes. RESULTS: The results of single-cell sequencing data showed that IFITM3 is highly expressed in the embryo, and after birth, RNA-seq showed high IFITM3 expression in mNRPCs. Proliferation and cell viability were greatly reduced after IFITM3 was knocked down. The cell membrane system and lysosomes were dramatically changed, and lysosomes were activated and evidently agglomerated in RAMP-treated cells. The expression of LAMP1 was significantly increased with lysosome agglomeration after treatment with rapamycin (RAMP). Further detection showed that SQSTM1/P62, HSC70 and LAMP-2A were upregulated, while no significant difference in LC3A/B expression was observed; no autophagic flux was generated. CONCLUSION: IFITM3 regulates mNRPC viability and proliferation mainly through chaperone-mediated autophagy (CMA) but not macroautophagy (MA). IFITM3 plays a significant role in maintaining the homeostasis of progenitor cell self-renewal by sustaining low-level activation of CMA to eliminate deleterious factors in cells.


Asunto(s)
Autofagia Mediada por Chaperones , Células-Madre Neurales , Animales , Homeostasis , Lisosomas/metabolismo , Ratones , Retina
18.
Redox Biol ; 52: 102292, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325805

RESUMEN

Diabetic retinopathy (DR) is one of the leading causes of blindness in the world, and timely prevention and treatment are very important. Previously, we found that a neurodegenerative factor, Glia maturation factor-ß (GMFB), was upregulated in the vitreous at a very early stage of diabetes, which may play an important role in pathogenesis. Here, we found that in a high glucose environment, large amounts of GMFB protein can be secreted in the vitreous, which translocates the ATPase ATP6V1A from the lysosome, preventing its assembly and alkalinizing the lysosome in the retinal pigment epithelial (RPE) cells. ACSL4 protein can be recognized by HSC70, the receptor for chaperone-mediated autophagy, and finally digested in the lysosome. Abnormalities in the autophagy-lysosome degradation process lead to its accumulation, which catalyzes the production of lethal lipid species and finally induces ferroptosis in RPE cells. GMFB antibody, lysosome activator NKH477, CMA activator QX77, and ferroptosis inhibitor Liproxstatin-1 were all effective in preventing early diabetic retinopathy and maintaining normal visual function, which has powerful clinical application value. Our research broadens the understanding of the relationship between autophagy and ferroptosis and provides a new therapeutic target for the treatment of DR.


Asunto(s)
Autofagia Mediada por Chaperones , Diabetes Mellitus , Retinopatía Diabética , Ferroptosis , Autofagia , Diabetes Mellitus/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Factor de Maduración de la Glia/metabolismo , Factor de Maduración de la Glia/farmacología , Humanos , Lisosomas/metabolismo
19.
Exp Eye Res ; 219: 108939, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35150734

RESUMEN

Corneal endothelial cells (CECs) play a major role in the maintenance of stromal hydration via the barrier and pump function for clear vision. Adult CECs cannot regenerate after injury. CECs cultured in vitro can undergo mitosis but may undergo corneal endothelial-to-mesenchymal transition (EnMT) and lose their endothelial characteristics. In this study, we examined the effects of CHIR99021 on transforming growth factor beta-1(TGFß1)-induced EnMT in human CECs (hCECs) lines. CHIR99021 kept hCECs in the hexagonal shape and could downregulate the EnMT markers alpha-smooth muscle actin (α-SMA) and fibronectin (FN1), meanwhile maintained the hCECs function markers Na+/K+-ATPase and zonula occludens-1 (ZO-1) at levels comparable to those in the normal control. Interestingly, we found that the combination of CHIR99021 and TGFß1 at appropriate concentrations would significantly promote the proliferation and migration of hCECs. These effects may be related to the inhibition of RhoA or Rac1, as well as the activation of Wnt and Erk pathway, with a calcium homeostasis. Our findings indicate that CHIR99021 inhibit EnMT and that the combination of CHIR99021 and TGFß1 may provide new ideas for corneal endothelial regeneration and wound healing.


Asunto(s)
Células Endoteliales , Endotelio Corneal , Factor de Crecimiento Transformador beta1/farmacología , Adulto , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Corneal/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Piridinas , Pirimidinas
20.
J Cell Mol Med ; 26(4): 1229-1244, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35023309

RESUMEN

The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin-induced diabetic rats, glyoxal-treated R28 cells and hypoxia-treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba-1, TSPO, NF-κB, Nrf2 and inflammation-related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal-treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia-treated microglia, which was largely dampened by FKN. The NF-κB and Nrf2 expressions and intracellular ROS were up-regulated in hypoxia-treated microglia compared with that in normoxia control, and FKN significantly inhibited NF-κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF-κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation-related cytokines and ROS, and protect the retina from diabetes insult.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacología , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Microglía , Enfermedades Neuroinflamatorias , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA