Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MedComm (2020) ; 4(6): e393, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37929015

RESUMEN

Fasting has been grown in popularity with multiple potential benefits. However, very few studies dynamically monitor physiological and pathological changes during long-term fasting using noninvasive methods. In the present study, we recruited 37 individuals with metabolic syndrome to engage in a 5-day water-only fasting regimen, and simultaneously captured the molecular alterations through urinary proteomics and metabolomics. Our findings reveal that water-only fasting significantly mitigated metabolic syndrome-related risk markers, such as body weight, body mass index, abdominal circumference, blood pressure, and fasting blood glucose levels in metabolic syndrome patients. Indicators of liver and renal function remained within the normal range, with the exception of uric acid. Notably, inflammatory response was inhibited during the water-only fasting period, as evidenced by a decrease in the human monocyte differentiation antigen CD14. Intriguingly, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation underwent a sex-dependent reprogramming throughout the fasting period, whereby males exhibited a greater upregulation of carbohydrate metabolism-related enzymes than females. This disparity may be attributed to evolutionary pressures. Collectively, our study sheds light on the beneficial physiological effects and novel dynamic molecular features associated with fasting in individuals with metabolic syndrome using noninvasive methods.

3.
JCI Insight ; 5(3)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32051337

RESUMEN

Lung cancer (LC) is a leading cause of cancer-related deaths worldwide. Its rapid growth requires hyperactive catabolism of principal metabolic fuels. It is unclear whether fructose, an abundant sugar in current diets, is essential for LC. We demonstrated that, under the condition of coexistence of metabolic fuels in the body, fructose was readily used by LC cells in vivo as a glucose alternative via upregulating GLUT5, a major fructose transporter encoded by solute carrier family 2 member 5 (SLC2A5). Metabolomic profiling coupled with isotope tracing demonstrated that incorporated fructose was catabolized to fuel fatty acid synthesis and palmitoleic acid generation in particular to expedite LC growth in vivo. Both in vitro and in vivo supplement of palmitoleic acid could restore impaired LC propagation caused by SLC2A5 deletion. Furthermore, molecular mechanism investigation revealed that GLUT5-mediated fructose utilization was required to suppress AMPK and consequently activate mTORC1 activity to promote LC growth. As such, pharmacological blockade of in vivo fructose utilization using a GLUT5 inhibitor remarkably curtailed LC growth. Together, this study underscores the importance of in vivo fructose utilization mediated by GLUT5 in governing LC growth and highlights a promising strategy to treat LC by targeting GLUT5 to eliminate those fructose-addicted neoplastic cells.


Asunto(s)
Adenilato Quinasa/metabolismo , Ácidos Grasos/biosíntesis , Fructosa/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Neoplasias Pulmonares/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Células A549 , Adenocarcinoma/enzimología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Estudios de Cohortes , Glucosa/metabolismo , Xenoinjertos , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...