Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28629, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590883

RESUMEN

Objectives: The present study was conducted to explore the performance of micronutrients in the prediction and prevention of coronavirus disease 2019 (COVID-19). Methods: This is an observational case-control study. 149 normal controls (NCs) and 214 COVID-19 patients were included in this study. Fat-soluble and water-soluble vitamins were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and inorganic elements were detected by inductively coupled plasma-mass spectrometry (ICP-MS) analysis. A logistic regression model based on six micronutrients were constructed using DxAI platform. Results: Many micronutrients were dysregulated in COVID-19 compared to normal control (NC). 25-Hydroxyvitamin D3 [25(OH)D3], magnesium (Mg), copper (Cu), calcium (Ca) and vitamin B6 (pyridoxic acid, PA) were significantly independent risk factors for COVID-19. The logistic regression model consisted of 25(OH)D3, Mg, Cu, Ca, vitamin B5 (VB5) and PA was developed, and displayed a strong discriminative capability to differentiate COVID-19 patients from NC individuals [area under the receiver operating characteristic curve (AUROC) = 0.901]. In addition, the model had great predictive ability in discriminating mild/normal COVID-19 patients from NC individuals (AUROC = 0.883). Conclusions: Our study showed that micronutrients were associated with COVID-19, and our logistic regression model based on six micronutrients has potential in clinical management of COVID-19, and will be useful for prediction of COVID-19 and screening of high-risk population.

2.
Clin Chim Acta ; 551: 117589, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37821059

RESUMEN

OBJECTIVES: The present study was conducted to evaluate the performance of serum bile acids in the prediction of cirrhosis in chronic hepatitis B (CHB) population. METHODS: Dysregulated metabolites were explored using untargeted and targeted metabolomic analyses. A machine learning model based on platelet (PLT) and several bile acids was constructed using light gradient boosting machine (LightGBM), to differentiate HBV-associated cirrhosis (BAC) from CHB patients. RESULTS: Serum bile acids were dysregulated in BAC compared to CHB patients. The LightGBM model consisted of PLT, TUDCA, UDCA, TLCA, LCA and CA. The model demonstrated a strong discrimination ability in the internal test subset of the training cohort to diagnose BAC from CHB patients (AUC = 0.97). The high diagnostic accuracy of the model was further validated in an independent validation cohort. In addition, the model had high predictive efficacy in discriminating compensated BAC from CHB patients (AUC = 0.89). The performance of the model was better than AST/ALT ratio and the gradient boosting (GB)-based model reported in previous studies. CONCLUSIONS: Our study showed that this LightGBM model based on PLT and 5 bile acids has potential in clinical assessments of CHB progression and will be useful for early detection of cirrhosis in CHB patients.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/diagnóstico , Cirrosis Hepática/diagnóstico , Plaquetas , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...