Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vascul Pharmacol ; 140: 106854, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33781961

RESUMEN

Sitagliptin, a dipeptidyl peptidase-4(DPP-4) Inhibitor, has been found to have an anti-atherosclerotic effect. Since apoptosis of vascular smooth muscle cells (VSMCs) contributes to the occurrence of diabetic atherosclerosis. This study aimed to examine whether sitagliptin suppresses the atherosclerosis progression to hyperglycemia in a low-dose streptozotocin (STZ)-induced diabetic mouse model, and then investigated the effect of sitagliptin on VSMCs apoptosis and its underlying mechanism. In vivo studies, eight-week-old low-dose STZ-induced diabetic apolipoprotein E (apoE)-deficient (apoE-/-) mice fed a high-fat diet were administered a DPP-4 inhibitor, sitagliptin, 200 mg/kg/day, or Lantus insulin by daily subcutaneous injection of 1 unit/mouse over a period of 12 weeks. Aortic atherosclerosis and apoptosis in the plaque were determined using dUTP-biotin nick end labeling (TUNEL) staining and immunohistochemistry. In vitro studies utilized the VSMCs for determination of glucagon-like peptide 1 receptor (GLP-1R) and DPP-4 expression and flow cytometry and Western blotting were used to determine apoptosis and protein expression, respectively. Sitagliptin significantly reduced atherosclerotic lesion area (7.00 ± 0.13 vs. 12.80 ± 2.7%, p = 0.003) and suppressed vascular smooth muscle cell apoptosis (2.30 ± 1.34 vs. 4.8 ± 1.93%, p = 0.003) compared with vehicle treatment. In addition, sitagliptin significantly increased the expression of ß-catenin in the aortic tissue(0.56 ± 0.13 vs.0.17 ± 0.02, p = 0.008)compared with vehicle treatment. In cultured mouse VSMCs, sitagliptin enhanced GLP-1 activity significantly retarded oxidative stress (H2O2)-induced apoptosis compared with GLP-1 or sitagliptin alone. Sitagliptin increased GLP-1-induced cytosolic levels of ß-catenin compared with GLP-1 alone, resulted in increasing the expression of survivin, and suppressed proinflammatory cytokines, i.e., interleukin-6(IL-6) and tumor necrosis factor-alpha(TNF-α), production in response to H2O2. In conclusion, these results indicated that the anti-atherosclerotic effect of sitagliptin is mediated, at least in part, by its inhibition of VSMCs apoptosis.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apoptosis/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/prevención & control , Diabetes Mellitus/tratamiento farmacológico , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Peróxido de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico
2.
Aging Cell ; 19(8): e13195, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32691494

RESUMEN

Mitochondrial dysfunction is associated with aging-mediated inflammatory responses, leading to metabolic deterioration, development of insulin resistance, and type 2 diabetes. Growth differentiation factor 15 (GDF15) is an important mitokine generated in response to mitochondrial stress and dysfunction; however, the implications of GDF15 to the aging process are poorly understood in mammals. In this study, we identified a link between mitochondrial stress-induced GDF15 production and protection from tissue inflammation on aging in humans and mice. We observed an increase in serum levels and hepatic expression of GDF15 as well as pro-inflammatory cytokines in elderly subjects. Circulating levels of cell-free mitochondrial DNA were significantly higher in elderly subjects with elevated serum levels of GDF15. In the BXD mouse reference population, mice with metabolic impairments and shorter survival were found to exhibit higher hepatic Gdf15 expression. Mendelian randomization links reduced GDF15 expression in human blood to increased body weight and inflammation. GDF15 deficiency promotes tissue inflammation by increasing the activation of resident immune cells in metabolic organs, such as in the liver and adipose tissues of 20-month-old mice. Aging also results in more severe liver injury and hepatic fat deposition in Gdf15-deficient mice. Although GDF15 is not required for Th17 cell differentiation and IL-17 production in Th17 cells, GDF15 contributes to regulatory T-cell-mediated suppression of conventional T-cell activation and inflammatory cytokines. Taken together, these data reveal that GDF15 is indispensable for attenuating aging-mediated local and systemic inflammation, thereby maintaining glucose homeostasis and insulin sensitivity in humans and mice.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Inflamación/metabolismo , Envejecimiento/fisiología , Animales , Femenino , Humanos , Inflamación/patología , Masculino , Análisis de la Aleatorización Mendeliana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...