Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Rep ; 29(1): 2373657, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39023011

RESUMEN

OBJECTIVES: Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS: In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS: MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION: We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.


Asunto(s)
Ferroptosis , Hemo-Oxigenasa 1 , Metano , Factor 2 Relacionado con NF-E2 , Daño por Reperfusión , Transducción de Señal , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Hemo-Oxigenasa 1/metabolismo , Metano/farmacología , Masculino , Humanos , Solución Salina/farmacología , Intestinos/efectos de los fármacos , Intestinos/lesiones , Ratones Endogámicos C57BL , Proteínas de la Membrana
2.
Front Oncol ; 14: 1381809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835370

RESUMEN

Aims: To observe the efficacy and safety of multimodal standardized analgesia in patients undergoing laparoscopic radical colorectal cancer surgery. Methods: A prospective, double-blind, randomized study of patients who were admitted to our hospital between December 2020 and March 2022 with a diagnosis of colorectal cancer and who intended to undergo elective laparoscopic radical colorectal cancer surgery was conducted. The participants were randomly divided into two intervention groups, namely, a multimodal standardized analgesia group and a routine analgesia group. In both groups, the visual analogue scale (VAS) pain scores while resting at 6 h, 24 h, 48 h and 72 h and during movement at 24 h, 48 h and 72 h; the number of patient controlled intravenous analgesia (PCIA) pump button presses and postoperative recovery indicators within 3 days after surgery; the interleukin-6 (IL-6) and C-reactive protein (CRP) levels on the 1st and 4th days after surgery; and the incidence of postoperative adverse reactions and complications were recorded. Results: Compared with the control group, the multimodal standardized analgesia group had significantly lower VAS pain scores at different time points while resting and during movement (P<0.05), significantly fewer PCIA pump button presses during the first 3 postoperative days (P<0.05), and significantly lower IL-6 and CRP levels on the 1st postoperative day (P<0.05). There was no statistically significant difference in the time to out-of-bed activity, the time to first flatus, the IL-6 and CRP levels on the 4th postoperative day or the incidence of postoperative adverse reactions and complications between the two groups (P >0.05). Conclusion: For patients undergoing laparoscopic radical colorectal cancer surgery, multimodal standardized analgesia with ropivacaine combined with parecoxib sodium and a PCIA pump had a better analgesic effect, as it effectively inhibited early postoperative inflammatory reactions and promoted postoperative recovery and did not increase the incidence of adverse reactions and complications. Therefore, it is worthy of widespread clinical practice.

3.
Micromachines (Basel) ; 15(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38542574

RESUMEN

We propose and demonstrate a novel on-chip optical sampling pulse interleaver based on time mode interleaving. The designed pulse interleaver was fabricated on a 220 nm silicon-on-insulator (SOI) platform, utilizing only one S-shaped delay waveguide. Interleaving is achieved by the relative time delay between different optical modes in the waveguide, eliminating the need for any active tuning. The total length of the delay waveguide is 5620.5 µm, which is reduced by a factor of 46.3% compared with previously reported time-wavelength interleaver schemes. The experimental results indicate that the device can convert an optical pulse into a 40 GHz pulse sequence composed of four pulses with a root mean square (RMS) timing error of 0.9 ps, making it well suited for generating high-frequency sampling pulses for optical analog-to-digital converters.

4.
Inflammation ; 47(1): 376-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37898993

RESUMEN

Intestinal ischemia‒reperfusion (I/R) injury is a common pathological process in patients undergoing gastrointestinal surgery, leading to local intestinal damage and increased microvascular permeability, eventually causing extraintestinal multiple organ dysfunction or sepsis. The NLRP3-mediated inflammatory response is associated with I/R injury. Methane saline (MS) has anti-pyroptosis properties. This study aims to explore the protective effect of MS on intestinal I/R injury and its potential mechanisms. After MS pretreatment, the in vivo model was established by temporarily clipping the mouse superior mesentery artery with a noninvasive vascular clamp, and the in vitro model was established by OGD/R on Caco-2 cells. The results of HE and TUNEL staining showed intestinal barrier damage after I/R injury, which was consistent with the IHC staining results of tight junction proteins. Moreover, the expression of the NLRP3 signaling pathway was increased after I/R injury, and inhibition of NLRP3 activation reduced Caco-2 cell injury, indicating that NLRP3-mediated pyroptosis was one of the main forms of cell death after I/R injury. Subsequently, we found that MS treatment ameliorated intestinal barrier function after I/R injury by suppressing NLRP3-mediated pyroptosis. MS treatment also reduced mitochondria-associated membrane (MAM) formation, which was considered to be a platform for activation of the NLRP3 inflammasome. Importantly, MS reduced ER stress, which was related to the PERK signaling pathway. Knocking down PERK, a key protein involved in ER stress and MAM formation, reversed the protective effect of MS, indicating that MS suppressed NLRP3 by reducing ER stress and MAM formation. In conclusion, we believe that MS suppresses MAMs and activation of the NLRP3 inflammasome by regulating the PERK signaling pathway to ameliorate intestinal I/R injury.


Asunto(s)
Inflamasomas , Daño por Reperfusión , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células CACO-2 , Transducción de Señal , Mitocondrias/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo
5.
Int J Biol Macromol ; 253(Pt 2): 126770, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37683741

RESUMEN

Translesion synthesis (TLS) is a kind of DNA repair that maintains the stability of the genome and ensures the normal growth of life in cells under emergencies. Y-family DNA polymerases, as a kind of error-prone DNA polymerase, mainly perform TLS. Previous studies have suggested that the occurrence of tumors is associated with the overexpression of human DNA polymerase of the Y family. And the combination of Y-family DNA polymerase inhibitors is promising for cancer therapy. Here we report the functional and structural characterization of a member of the Y-family DNA polymerases, TTEDbh. We determine TTEDbh is an extreme TLS polymerase that can cross oxidative damage sites, and further identify the amino acids and novel structures that are critical for DNA binding, synthesis, fidelity, and oxidative damage bypass. Moreover, previously unnoticed structural elements with important functions have been discovered and analyzed. These studies provide a more experimental basis for further elucidating the molecular mechanisms of DNA polymerase in the Y family. It could also shed light on the design of drugs to target tumors.


Asunto(s)
Daño del ADN , Neoplasias , Humanos , ADN Polimerasa Dirigida por ADN/química , Reparación del ADN , Replicación del ADN
6.
Front Oncol ; 13: 1189948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287912

RESUMEN

Because of its significant advantage of fast postoperative recovery, natural orifice specimen extraction surgery (NOSES) has attracted increasing attention worldwide. However, the NOSES in gastric cancer (GC) treatment still needs more clinical practice, especially for the rare anatomical anomaly. Situs inversus totalis (SIT) is a rare autosomal recessive anatomical anomaly with an incidence ranging between 1/8,000 and 1/25,000 births. We present a video of transvaginal specimen extraction following totally laparoscopic D2 distal gastrectomy performed in a 59-year-old woman known to have SIT. Preoperative investigations revealed that the patient had early GC at the antrum. A gastroscopy report from the local hospital showed signet-ring cell carcinoma. The preoperative computed tomography scan revealed irregular thickening of the gastric wall at the junction of the greater curvature and antrum without metastasis to the lymph nodes. In total, laparoscopic D2 distal gastrectomy was performed with transvaginal specimen extraction. Billroth II with Braun anastomosis was performed for reconstruction. The length of the operation was 240 min without intraoperative complications and with minimal blood loss of 50 ml. The patient was uneventfully discharged on postoperative Day 7. The final pathology confirmed signet-ring cell carcinoma confined to the mucosal muscle without metastasis in 16 lymph nodes. Transvaginal specimen extraction following totally laparoscopic D2 distal gastrectomy can be safely performed in patients with SIT and has similar surgical outcomes to usual laparoscopic gastrectomy.

7.
Biomolecules ; 13(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37189394

RESUMEN

The scaffolding protein Axin is an important regulator of the Wnt signaling pathway, and its dysfunction is closely related to carcinogenesis. Axin could affect the assembly and dissociation of the ß-catenin destruction complex. It can be regulated by phosphorylation, poly-ADP-ribosylation, and ubiquitination. The E3 ubiquitin ligase SIAH1 participates in the Wnt pathway by targeting various components for degradation. SIAH1 is also implicated in the regulation of Axin2 degradation, but the specific mechanism remains unclear. Here, we verified that the Axin2-GSK3 binding domain (GBD) was sufficient for SIAH1 binding by the GST pull-down assay. Our crystal structure of the Axin2/SIAH1 complex at 2.53 Å resolution reveals that one Axin2 molecule binds to one SIAH1 molecule via its GBD. These interactions critically depend on a highly conserved peptide 361EMTPVEPA368 within the Axin2-GBD, which forms a loop and binds to a deep groove formed by ß1, ß2, and ß3 of SIAH1 by the N-terminal hydrophilic amino acids Arg361 and Thr363 and the C-terminal VxP motif. The novel binding mode indicates a promising drug-binding site for regulating Wnt/ß-catenin signaling.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Vía de Señalización Wnt , Humanos , Proteína Axina/genética , Proteína Axina/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , beta Catenina/metabolismo , Ubiquitinación
8.
BMC Surg ; 23(1): 26, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36710336

RESUMEN

BACKGROUND: To investigate the feasibility, safety and efficacy of the right-side approach to enter Retzius space in laparoscopic transabdominal preperitoneal bilateral inguinal hernia repair. METHODS: Retrospective analysis was performed on 189 patients who were diagnosed with bilateral inguinal hernia preoperatively or intraoperatively and underwent selective TAPP in the General Surgery I Section of Shaanxi Provincial People's Hospital from January 2015 to September 2020. 94 cases were performed using the right-side approach (research group), and 95 cases with conventional approach (control group). Intraoperative and postoperative conditions of the two groups were observed and compared. RESULTS: All operation were completed successfully. The operative time of research group was significantly shorter than that of control group (128.8 ± 35.4 vs 144.1 ± 40.9 min, P = 0.006). There were no significant differences in postoperative hospital stay, VAS score on first postoperative day, incidence of seroma and hematoma, urinary retention and other complications (P > 0.05). None of the patients occured hernia recurrence, mesh infection, intestinal obstruction and other complications. CONCLUSIONS: The right-side approach to enter Retzius space is safe and feasible in TAPP surgery of bilateral inguinal hernia. Compared with the conventional approach, it can shorten the operative time and has certain advantages.


Asunto(s)
Hernia Inguinal , Laparoscopía , Humanos , Hernia Inguinal/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Herniorrafia , Mallas Quirúrgicas , Recurrencia
9.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614183

RESUMEN

DNA double-strand breaks (DSBs) are the most perilous and harmful type of DNA damage and can cause tumorigenesis or cell death if left repaired with an error or unrepaired. RadD, a member of the SF2 family, is a recently discovered DNA repair protein involved in the repair of DSBs after radiation or chemical damage. However, the function of RadD in DNA repair remains unclear. Here, we determined the crystal structures of RadD/ATPγS and RadD/ATP complexes and revealed the novel mechanism of RadD binding to DNA and ATP hydrolysis with biochemical data. In the RadD catalytic center, the Gly34 and Gly36 on the P-loop are key residues for ATP binding besides the conserved amino acids Lys37 and Arg343 in the SF2 family. If any of them mutate, then RadD loses ATPase activity. Asp117 polarizes the attacking water molecule, which then starts a nucleophilic reaction toward γ-phosphate, forming the transition state. Lys68 acts as a pocket switch to regulate substrate entry and product release. We revealed that the C-terminal peptide of single-stranded DNA-binding protein (SSB) binds the RadD C-terminal domain (CTD) and promotes the RadD ATPase activity. Our mutagenesis studies confirmed that the residues Arg428 on the zinc finger domain (ZFD) and Lys488 on the CTD of RadD are the key sites for binding branched DNA. Using the Coot software combined with molecular docking, we propose a RadD-binding DNA model for the DNA damage repair process.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Escherichia coli , Escherichia coli , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica
10.
World J Gastrointest Oncol ; 14(7): 1252-1264, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36051096

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed and treated in advanced tumor stages with poor prognosis. More effective screening programs and novel therapeutic means are urgently needed. Recent studies have regarded tight junction protein claudin 18.2 (CLDN18.2) as a candidate target for cancer treatment, and zolbetuximab (formerly known as IMAB362) has been developed against CLDN18.2. However, there are few data reported thus far related to the clinicopathological characteristics of CLDN18.2 expression for PDAC. AIM: To investigate the expression of CLDN18.2 in PDAC patients and subsequently propose a new target for the treatment of PDAC. METHODS: The Cancer Genome Atlas, Genotype-Tissue Expression, Gene Expression Omnibus, and European Genome-phenome Archive databases were first employed to analyze the CLDN18 gene expression in normal pancreatic tissue compared to that in pancreatic cancer tissue. Second, we analyzed the expression of CLDN18.2 in 93 primary PDACs, 86 para-cancer tissues, and 13 normal pancreatic tissues by immunohistochemistry. Immunostained tissues were assessed applying the histoscore. subsequently, they fell into two groups according to the expression state of CLDN18.2. Furthermore, the correlations between CLDN18.2 expression and diverse clinicopathological characteristics, including survival, were investigated. RESULTS: The gene expression of CLDN18 was statistically higher (P < 0.01) in pancreatic tumors than in normal tissues. However, there was no significant correlation between CLDN18 expression and survival in pancreatic cancer patients. CLDN18.2 was expressed in 88 (94.6%) of the reported PDACs. Among these tumors, 50 (56.8%) cases showed strong immunostaining. The para-cancer tissues were positive in 81 (94.2%) cases, among which 32 (39.5%) of cases were characterized for strong staining intensities. Normal pancreatic tissue was identified solely via weak immunostaining. Finally, CLDN18.2 expression significantly correlated with lymph node metastasis, distant metastasis, nerve invasion, stage, and survival of PDAC patients, while there was no correlation between CLDN18.2 expression and localization, tumor size, patient age and sex, nor any other clinicopathological characteristic. CONCLUSION: CLDN18.2 expression is frequently increased in PDAC patients. Thus, it may act as a potential therapeutic target for zolbetuximab in PDAC.

11.
Biochem Biophys Res Commun ; 626: 220-228, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35998547

RESUMEN

The deregulation of calcium/calmodulin-dependent protein kinase II inhibitor 1 (CAMK2N1) is linked to the carcinogenesis reported in several malignancies. To date, studies describing the role of CAMK2N1 in colorectal carcinoma are scarce. The current project was carried out to study the relationship between CAMK2N1 and colorectal carcinoma progression. CAMK2N1 levels were lowered in colorectal carcinoma tissue, which also correlated to poor overall survival in patients. Colorectal carcinoma cell lines with overexpressed CAMK2N1 showed a reduction in transformative phenotypes, including proliferation suppression, the blocking of cell cycle progression, metastasis inhibition and chemoresistance reduction, whereas CAMK2N1-silenced cells showed the opposite effect. Mechanistic studies revealed a novel regulatory role of CAMK2N1 on Wnt/ß-catenin transduction. Up-regulation of CAMK2N1 lowered the level of disheveled 2, phosphorylated GSK-3ß, ß-catenin, c-myc and cyclin D1. Re-expression of ß-catenin decreased the CAMK2N1-mediated tumor-inhibiting effects. Moreover, blocking of Wnt/ß-catenin diminished CAMK2N1-silencing-elicited cancer-enhancing effect. Critically, the tumorigenicity of CAMK2N1-overexpressed cells was markedly weakened in nude mice. To conclude, the study demonstrated a cancer-suppressive function of CAMK2N1 in colorectal carcinoma and illustrated that CAMK2N1 exerts the tumor-inhibiting effects via suppression of the Wnt/ß-catenin pathway.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Desnudos , Proteínas , Vía de Señalización Wnt , beta Catenina/metabolismo
12.
BMC Surg ; 22(1): 239, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725604

RESUMEN

Regardless of the advances in surgical techniques, parastomal hernia is still an inevitable complication for many patients with low rectal cancer undergoing abdominal perineal resection (APR). Extraperitoneal colostomy (EPC) seems to be a effective method to reduce the risk of parastomal hernia. We propose a new approach to simplify and standardize laparoscopic EPC to make this operation easy to perform. We used the technique of laparoscopic TEP groin hernia repair to produce an extraperitoneal tunnel, which can not only facilitate precise visualization of the extraperitoneal tunnel but also utilize the intact posterior rectus abdominis sheath as biologic materials to maintain soft-tissue augmentation, with a satisfactory result. With laparoscopy, we can create adequate space without insufficient dissection of the extraperitoneal tunnel while avoiding damage to the retrorectus sheath. At the time of writing, we had performed this method in four patients, without any complications. This technique is effective at preventing parastomal hernia without extra costs.


Asunto(s)
Hernia Incisional , Laparoscopía , Proctectomía , Colostomía/efectos adversos , Humanos , Hernia Incisional/cirugía , Laparoscopía/métodos , Peritoneo/cirugía , Mallas Quirúrgicas
13.
MedComm (2020) ; 2(3): 442-452, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34541573

RESUMEN

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants has posed a serious global public health emergency. Therapeutic interventions or vaccines are urgently needed to treat and prevent the further dissemination of this contagious virus. This study described the identification of neutralizing receptor-binding domain (RBD)-specific antibodies from mice through vaccination with a recombinant SARS-CoV-2 RBD. RBD-targeted monoclonal antibodies (mAbs) with distinct function and epitope recognition were selected to understand SARS-CoV-2 neutralization. High-affinity RBD-specific antibodies exhibited high potency in neutralizing both live and pseudotype SARS-CoV-2 viruses and the SARS-CoV-2 pseudovirus particle containing the spike protein S-RBDV367F mutant (SARS-CoV-2(V367F)). These results demonstrated that these antibodies recognize four distinct groups (I-IV) of epitopes on the RBD and that mAbs targeting group I epitope can be used in combination with mAbs recognizing groups II and/or IV epitope to make mAb cocktails against SARS-CoV-2 and its mutants. Moreover, structural characterization reveals that groups I, III, and IV epitopes are closely located to an RBD hotspot. The identification of RBD-specific antibodies and cocktails may provide an effective therapeutic and prophylactic intervention against SARS-CoV-2 and its isolates.

14.
Opt Express ; 28(23): 34137-34146, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182890

RESUMEN

We propose a novel optical 1×2 power splitter based on an asymmetric ladder-shaped multimode interference (MMI) coupler in silicon-on-insulator (SOI) which has an ultra-compact size of 3.3 µm×2.4 µm. A trapezoid with a small region is removed from the bottom left corner of the MMI coupler to achieve variable splitting ratio. The comparison with the asymmetric rectangular 1×2 splitter is numerically analyzed. By carefully optimizing the width of input taper, the proposed splitter shows a low phase deviation for the two output ports while keeping both of a low-loss performance and feasible splitting ratio. The simulated results show that the splitter can operate with an insertion loss less than 0.67 dB, a large range of splitting ratio from 50:50 to 11:89 and an ultra-low phase deviation less than 2.8° among the C band spectra.

15.
World J Surg Oncol ; 18(1): 236, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883335

RESUMEN

BACKGROUND: Colon adenocarcinoma (COAD) is one of the most common malignant tumors, with high incidence and mortality rates worldwide. Reliable prognostic biomarkers are needed to guide clinical practice. METHODS: Comprehensive gene expression with alternative splicing (AS) profiles for each patient was downloaded using the SpliceSeq database from The Cancer Genome Atlas. Cox regression analysis was conducted to screen for prognostic AS events. The R package limma was used to screen differentially expressed genes (DEGs) between normal and tumor samples in the COAD cohort. A Venn plot analysis was performed between DEGs and prognostic AS events, and the DEGs that co-occurred with prognostic AS events (DEGAS) were identified. The top 30 most-connected DEGAS in protein-protein interaction analysis were identified through Cox proportional hazards regression to establish prognostic models. RESULTS: In total, 350 patients were included in the study. A total of 22,451 AS events were detected, of which 2004 from 1439 genes were significantly associated with survival time. By overlapping these 1439 genes with 6455 DEGs, 211 DEGs with AS events were identified. After the construction of the protein-protein interaction network, the top 30 hub genes were included in a multivariate analysis. Finally, a risk score based on 12 genes associated with overall survival was established (P < 0.05). The area under the curve was 0.782. The risk score was an independent predictor (P < 0.001). CONCLUSIONS: By exploring survival-associated AS events, a powerful prognostic predictor consisting of 12 DEGAS was built. This study aims to propose a novel method to provide treatment targets for COAD and guide clinical practice in the future.


Asunto(s)
Adenocarcinoma , Empalme Alternativo , Adenocarcinoma/genética , Colon , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico
17.
Sci Rep ; 8(1): 2127, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391496

RESUMEN

RecF is a principal member of the RecF pathway. It interacts with RecO and RecR to initiate homologous recombination by loading RecA recombinases on single-stranded DNA and displacing single-stranded DNA-binding proteins. As an ATP-binding cassette ATPase, RecF exhibits ATP-dependent dimerization and structural homology with Rad50 and SMC proteins. However, the mechanism and action pattern of RecF ATP-dependent dimerization remains unclear. Here, We determined three crystal structures of TTERecF, TTERecF-ATP and TTERecF-ATPɤS from Thermoanaerobacter tengcongensis that reveal a novel ATP-driven RecF dimerization. RecF contains a positively charged tunnel on its dimer interface that is essential to ATP binding. Our structural and biochemical data indicate that the Walker A motif serves as a switch and plays a key role in ATP binding and RecF dimerization. Furthermore, Biolayer interferometry assay results showed that the TTERecF interacted with ATP and formed a dimer, displaying a higher affinity for DNA than that of the TTERecF monomer. Overall, our results provide a solid structural basis for understanding the process of RecF binding with ATP and the functional mechanism of ATP-dependent RecF dimerization.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Conformación Proteica , Thermoanaerobacter/enzimología , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Dimerización
18.
Sci Rep ; 7(1): 15638, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142233

RESUMEN

CDC73/Parafibromin is a critical component of the Paf1 complex (PAF1C), which is involved in transcriptional elongation and histone modifications. Mutations of the human CDC73/HRPT2 gene are associated with hyperparathyroidism-jaw tumor (HPT-JT) syndrome, an autosomal dominant disorder. CDC73/parafibromin was initially recognized as a tumor suppressor by inhibiting cell proliferation via repression of cyclin D1 and c-myc genes. In recent years, it has also shown oncogenic features by activating the canonical Wnt/ß-catenin signal pathway. Here, through limited proteolysis analysis, we demonstrate that the evolutionarily conserved human CDC73 N-terminal 111 residues form a globularly folded domain (hCDC73-NTD). We have determined a crystal structure of hCDC73-NTD at 1.02 Å resolution, which reveals a novel protein fold. CDC73-NTD contains an extended hydrophobic groove on its surface that may be important for its function. Most pathogenic CDC73 missense mutations associated with the HPT-JT syndrome are located in the region encoding CDC73-NTD. Our crystal and biochemical data indicate that most CDC73 missense mutations disrupt the folding of the hydrophobic core of hCDC73-NTD, while others such as the K34Q mutant reduce its thermostability. Overall, our results provide a solid structural basis for understanding the structure and function of CDC73 and its association with the HPT-JT syndrome and other diseases.


Asunto(s)
Adenoma/genética , Fibroma/genética , Hiperparatiroidismo/genética , Neoplasias Maxilomandibulares/genética , Conformación Proteica , Proteínas Supresoras de Tumor/química , Adenoma/patología , Proliferación Celular/genética , Cristalografía por Rayos X , Ciclina D1/genética , Fibroma/patología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hiperparatiroidismo/patología , Neoplasias Maxilomandibulares/patología , Mutación Missense/genética , Dominios Proteicos/genética , Pliegue de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Propiedades de Superficie , Proteínas Supresoras de Tumor/genética
19.
Proc Natl Acad Sci U S A ; 114(42): 11151-11156, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973912

RESUMEN

Type I restriction-modification (R-M) systems are multisubunit enzymes with separate DNA-recognition (S), methylation (M), and restriction (R) subunits. Despite extensive studies spanning five decades, the detailed molecular mechanisms underlying subunit assembly and conformational transition are still unclear due to the lack of high-resolution structural information. Here, we report the atomic structure of a type I MTase complex (2M+1S) bound to DNA and cofactor S-adenosyl methionine in the "open" form. The intermolecular interactions between M and S subunits are mediated by a four-helix bundle motif, which also determines the specificity of the interaction. Structural comparison between open and previously reported low-resolution "closed" structures identifies the huge conformational changes within the MTase complex. Furthermore, biochemical results show that R subunits prefer to load onto the closed form MTase. Based on our results, we proposed an updated model for the complex assembly. The work reported here provides guidelines for future applications in molecular biology.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/metabolismo , Thermoanaerobacter/enzimología , Enzimas de Restricción-Modificación del ADN/química , Conformación Proteica
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 299-309, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531464

RESUMEN

The Mre11 complex comprising meiotic recombination 11 (Mre11), Rad50 and Nijmegen breakage syndrome 1 (Nbs1) plays multiple important roles in the sensing, processing and repair of DNA double-strand breaks (DSBs). Here, crystal structures of the Escherichia coli Mre11 homologue SbcD and its Mn2+ complex are reported. Dimerization of SbcD depends on a four-helix bundle consisting of helices α2, α3, α2' and α3' of the two monomers, and the irregular and bent conformation of helices α3 and α3' in the SbcD dimer results in a dimeric arrangement that differs from those of previously reported Mre11 dimers. This finding indicates a distinct selectivity in DNA substrate recognition. The biochemical data combined with the crystal structures revealed that the SbcD monomer exhibits single-stranded DNA (ssDNA) endonuclease activity and double-stranded DNA (dsDNA) exonuclease activity on the addition of a high concentration of Mn2+. For the first time, atomic force microscopy analysis has been used to demonstrate that the SbcD monomer also possesses Mn2+-dependent dsDNA endonuclease activity. Loop ß7-α6 of SbcD is likely to be a molecular switch and plays an important role in the regulation of substrate binding, catalytic reaction and state transitions. Based on structural and mutational analyses, a novel ssDNA-binding model of SbcD is proposed, providing insight into the catalytic mechanism of DSBs repair by the Mre11 complex.


Asunto(s)
Reparación del ADN , ADN Bacteriano/química , ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Exonucleasas/química , Cationes Bivalentes , Cristalografía por Rayos X , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Manganeso/química , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...