Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 743
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39102136

RESUMEN

In this study, six individual machine learning (ML) models and a stacked ensemble model (SEM) were used for daytime visibility estimation at Bangkok airport during the dry season (November-April) for 2017-2022. The individual ML models are random forest, adaptive boosting, gradient boosting, extreme gradient boosting, light gradient boosting machine, and cat boosting. The SEM was developed by the combination of outputs from the individual models. Furthermore, the impact of factors affecting visibility was examined using the Shapley Additive exPlanation (SHAP) method, an interpretable ML technique inspired by the game theory-based approach. The predictor variables include different air pollutants, meteorological variables, and time-related variables. The light gradient boosting machine model is identified as the most effective individual ML model. On an hourly time scale, it showed the best performance across three out of four metrics with the ρ = 0.86, MB = 0, ME = 0.48 km (second lowest), and RMSE = 0.8 km. On a daily time scale, the model performed the best for all evaluation metrics with ρ = 0.92, MB = 0.0 km, ME = 0.3 km, and RMSE = 0.43 km. The SEM outperformed all the individual models across three out of four metrics on an hourly time scale with ρ = 0.88, MB = 0.0 km, (second lowest), and RMSE = 0.75 km. On the daily scale, it performed the best with ρ = 0.93, MB = 0.02 km, ME = 0.27 km, and RMSE = 0.4 km. The seasonal average original (VISorig) and meteorologically normalized visibility (VISnorm) decrease from 2017 to 2021 but increase in 2022. The rate of decrease in VISorig is double than rate of decrease in VISnorm which suggests the effect of meteorology visibility degradation. The SHAP analysis identified relative humidity (RH), PM2.5, PM10, day of the season year (i.e., Julian day) (JD), and O3 as the most important variables affecting visibility. At low RH, visibility is not sensitive to changes in RH. However, beyond a threshold, a negative correlation between RH and visibility is found potentially due to the hygroscopic growth of aerosols. The dependence of the Shapley values of PM2.5 and PM10 on RH and the change in average visibilities under different RH intervals also suggest the effect of hygroscopic growth of aerosol on visibility. A negative relationship has been identified between visibility and both PM2.5 and PM10. Visibility is positively correlated with O3 at lower to moderate concentrations, with diminishing impact at very high concentrations. The JD is strongly negatively related to visibility during winter while weakly associated positively later in summer. Findings from this research suggest the feasibility of employing machine learning techniques for predicting visibility and understanding the factors influencing its fluctuations.

2.
Chem Biodivers ; : e202401646, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102223

RESUMEN

A focused chemical investigation into the polar fractions of a well-known traditional Chinese medicine called Sang-Bai-Pi (the root bark of Morus alba) yielded a panel of prenylated flavanones. The new compounds were identified as four pairs of enantiomers (1a/1b-4a/4b) featuring the same constitution structure, on the basis of HRMS, NMR and ECD analyses. Several previously reported known racemic co-metabolites were also analyzed and separated by HPLC on chiral columns, and the absolute configurations of pure enantiomers were established via ECD technique for the first time. The inhibition of these isolates against the antidiabetic target a-glycosidase was further tested, with most of them showing decent inhibitory activity compared with the positive control acarbose. The interaction mechanism of two selected compounds (3a & 4b) was explored by kinetics experiment, which revealed a mixed type of inhibition pattern toward the enzyme.

3.
Ecotoxicol Environ Saf ; 283: 116853, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137468

RESUMEN

The effect and underlying mechanism of tetrabromobisphenol A (TBBPA), a plastic additive, on biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA USA300) remain unknown. This study first investigated the impact of different concentrations of TBBPA on the growth and biofilm formation of USA300. The results indicated that a low concentration (0.5 mg/L) of TBBPA promoted the growth and biofilm formation of USA300, whereas high concentrations (5 mg/L and 10 mg/L) of TBBPA had inhibitory effects. Further exploration revealed that the low concentration of TBBPA enhance biofilm formation by promoting the synthesis of extracellular proteins, release of extracellular DNA (eDNA), and production of staphyloxanthin. RTqPCR analysis demonstrated that the low concentration of TBBPA upregulated genes associated with extracellular protein synthesis (sarA, fnbA, fnbB, aur) and eDNA formation (atlA) and increased the expression of genes involved in staphyloxanthin biosynthesis (crtM), suggesting a potential mechanism for enhanced resistance of USA300 to adverse conditions. These findings shed light on how low concentrations of TBBPA facilitate biofilm formation in USA300 and highlight the indirect impact of plastic additives on pathogenic bacteria in terms of human health. In the future, in-depth studies about effects of plastic additives on pathogenicity of pathogenic bacteria should be conducted. CAPSULE: The protein and eDNA contents in biofilms of methicillin-resistant Staphylococcus aureus are increased by low concentrations of TBBPA.

4.
J Agric Food Chem ; 72(32): 17938-17952, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092914

RESUMEN

Fifteen stilbenoid derivatives, including five previously undescribed ones (albaphenols A-E, 1-5) with diverse scaffolds, were obtained from the well-known agricultural economic tree Morus alba. Their structures, including absolute stereochemistries, were fully characterized by detailed interpretation of spectroscopic data and quantum chemical computational analyses of nuclear magnetic resonance (NMR) and electric circular dichroism (ECD). Albaphenol A (1) features an unprecedented rearranged carbon skeleton incorporating a novel 2-oxaspiro[bicyclo[3.2.1]octane-6,3'-furan] motif; albaphenol C (3) is likely derived from a cometabolite through an interesting intramolecular transesterification reaction; and albaphenol E (5) bears a cleavage-reconnection scaffold via a dioxane ring. All of the compounds exhibited significant inhibition against the diabetic target α-glucosidase, with low to submicromole IC50 values (0.70-8.27 µM), and the binding modes of selected molecules with the enzyme were further investigated by fluorescence quenching, kinetics, and molecular docking experiments. The antidiabetic effect of the most active and abundant mulberrofuran G (6) was further assessed in vivo in diabetic mice, revealing potent antihyperglycemic activity and comparable antidiabetic efficacy to the clinical drug acarbose.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Morus , Extractos Vegetales , Estilbenos , alfa-Glucosidasas , Animales , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Ratones , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Estilbenos/química , Estilbenos/farmacología , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Masculino , Morus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Estructura Molecular , Relación Estructura-Actividad , Cinética
5.
Adv Sci (Weinh) ; : e2402329, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120980

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and its prognosis remains poor. Although growing numbers of studies have verified the involvement of circular RNAs (circRNAs) in various cancer types, their specific functions in ICC remain elusive. Herein, a circRNA, circUGP2 is identified by circRNA sequencing, which is downregulated in ICC tissues and correlated with patients' prognosis. Moreover, circUGP2 overexpression suppresses tumor progression in vitro and in vivo. Mechanistically, circUGP2 functions as a transcriptional co-activator of PURB over the expression of ADGRB1. It can also upregulate ADGRB1 expression by sponging miR-3191-5p. As a result, ADGRB1 prevents MDM2-mediated p53 polyubiquitination and thereby activates p53 signaling to inhibit ICC progression. Based on these findings, circUGP2 plasmid is encapsulated into a lipid nanoparticle (LNP) system, which has successfully targeted tumor site and shows superior anti-tumor effects. In summary, the present study has identified the role of circUGP2 as a tumor suppressor in ICC through regulating ADGRB1/p53 axis, and the application of LNP provides a promising translational strategy for ICC treatment.

6.
Heliyon ; 10(13): e33585, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040273

RESUMEN

Silicosis is an occupational respiratory disease caused by long-term inhalation of high concentrations of free silica particles. Studies suggest that oxidative stress is a crucial initiator of silicosis fibrosis, and previous studies have linked the antioxidative stress transcription factor known as Nrf2 to fibrosis antagonism. Myofibroblasts play a pivotal role in tissue damage repair due to oxidative stress. Unlike physiological repair, myofibroblasts in fibrosis exhibit an apoptosis-resistant phenotype, continuously synthesising and secreting significant amounts of collagen and other extracellular matrices, which could be a direct cause of silicosis fibrosis. However, the relationship and mechanism of action between oxidative stress and myofibroblast apoptosis resistance remain unclear. In this study, a new 3D cell culture model using mice lung decellularised matrix particles and fibroblasts was developed, simulating the changes in myofibroblasts during the development of silicotic nodules. Western Blot results indicate that silica stimulation leads to increased collagen deposition and decreased apoptosis-related protein Bax and oxidative stress-related protein Nrf2 in the 3D spheroid model. Immunofluorescence experiments reveal co-localisation in their expression. In Nrf2 overexpressing spheroids, Bax exhibits significant upregulation. In the Nrf2 knockout spheroids, Bax is also significantly downregulated; after intervention with Bax inhibitors, a significant downregulation of Bax-induced apoptosis was also detected in the Nrf2-overexpressed spheroids. In contrast, Bax-induced apoptosis showed a significant upregulation trend in Nrf2-overexpressed spheroids after intervention with Bax agonists. The results demonstrate that the spheroid model can mimic the development process of silicotic nodules, and silica stimulation leads to an apoptosis-resistant phenotype in myofibroblasts in the model, acting through the Nrf2/Bax pathway. This research establishes a new methodology for silicosis study, identifies therapeutic targets for silicosis, and opens new avenues for studying the mechanisms of silicosis fibrosis.

7.
Nat Neurosci ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009835

RESUMEN

Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions.

8.
Toxics ; 12(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39058154

RESUMEN

Testosterone (T), an environmental androgen, significantly disrupts endocrine systems in wildlife and ecosystems. Despite growing concern over its high levels in aquatic environments, the reproductive toxicity of testosterone and its mechanisms are not well understood. In this study, we investigated the reproductive toxicity and mechanisms of testosterone using Caenorhabditis elegans (C. elegans) and assessed its ecological toxicity through the benchmark dose (BMD) method. Our results indicate that T concentrations exceeding 0.01 µg/L significantly reduce the brood size, decrease germ cell counts, and prolong the generation time in C. elegans as T concentrations increase. Furthermore, to elucidate the specific mechanisms, we analyzed the expression of nhr-69, mpk-1, and other genes involved in sex determination. These findings suggest that the nhr-69-mediated reproductive toxicity of T primarily affects sperm formation and the offspring number by influencing its downstream targets, mpk-1 and fog-1/3, which are critical in the germ cell sex-determining pathway. Additionally, this study determined that the 10% lower boundary of the baseline dose (BMDL10) is 1.160 ng/L, offering a more protective reference dose for the ecological risk assessment of T. The present study suggests that nhr-69 mediates the reproductive toxicity of T by influencing mpk-1 and fog-1/3, critical genes at the end of the germ cell sex-determining pathway, thereby providing a basis for establishing reproductive toxicity thresholds for T.

9.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979357

RESUMEN

Objective: A growing literature suggests manipulating dietary protein status decreases sweet consumption in rodents and in humans. Underlying neurocircuit mechanisms have not yet been determined, but previous work points towards hedonic rather than homeostatic pathways. Here we hypothesized that a history of protein restriction reduces sucrose seeking by altering mesolimbic dopamine signaling. Methods: We tested this hypothesis using established behavioral tests of palatability and motivation, including the 'palatability contrast' and conditioned place preference (CPP) tests. We used modern optical sensors for measuring real-time nucleus accumbens (NAc) dopamine dynamics during sucrose consumption, via fiber photometry, in male C57/Bl6J mice maintained on low-protein high-carbohydrate (LPHC) or control (CON) diet for ∼5 weeks. Results: A history of protein restriction decreased the consumption of a sucrose 'dessert' in sated mice by ∼50% compared to controls [T-test, p< 0.05]. The dopamine release in NAc during sucrose consumption was reduced, also by ∼50%, in LPHC-fed mice compared to CON [T-test, p< 0.01]. Furthermore, LPHC-feeding blocked the sucrose-conditioned place preference we observed in CON-fed mice [paired T-test, p< 0.05], indicating reduced motivation. This was accompanied by a 33% decrease in neuronal activation of the NAc core, as measured by c-Fos immunolabeling from brains collected directly after the CPP test. Conclusions: Despite ongoing efforts to promote healthier dietary habits, adherence to recommendations aimed at reducing the intake of added sugars and processed sweets remains challenging. This study highlights chronic dietary protein restriction as a nutritional intervention that suppresses the motivation for sucrose intake, via blunted sucrose-evoke dopamine release in NAc.

10.
Anal Biochem ; 693: 115597, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38969155

RESUMEN

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.


Asunto(s)
Técnicas Electroquímicas , Iridio , Vibrio parahaemolyticus , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio parahaemolyticus/genética , Concentración de Iones de Hidrógeno , Técnicas Electroquímicas/métodos , Iridio/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Biosensibles/métodos , Límite de Detección , Electrodos
11.
Heliyon ; 10(13): e33001, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39050461

RESUMEN

Upregulation of metabolism-related gene cytidine triphosphate synthase 1 (CTPS1) is associated with poor prognosis in multiple myeloma (MM). However, its role in MM remains unclear. In this study, bioinformatics analysis revealed significant differences in CTPS1 expression levels among various plasma cell malignancies. The patients with high CTPS1 expression had poor overall survival, progression-free survival, and event-free survival. CTPS1 was significantly correlated with sex, albumin, ß2 microglobulin, lactate dehydrogenase, and advanced disease. In vitro experiments demonstrated that CTPS1-overexpressing (CTPS1-OE) cells proliferated faster than CTPS1-short hairpin RNA (CTPS1-sh) cells. NRG-SGM3 mice showed significantly accelerated tumor growth in the CTPS1-OE group. CTPS1-OE decreased sensitivity to bortezomib, whereas CTPS1-sh increased sensitivity to bortezomib in MM cell lines. Mechanistically, CTPS1 was primarily involved in metabolism processes. Additionally, CTPS1 was closely related to several co-expressed genes such as MYC and the bone marrow immune microenvironment. In conclusion, CTPS1 is a significant prognostic biomarker for patients with MM, suggesting a potential therapeutic target.

12.
J Autism Dev Disord ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39048798

RESUMEN

This study evaluated developmental, psychiatric, and neurologic conditions among older siblings of children with and without autism spectrum disorder (ASD) to understand the extent of familial clustering of these diagnoses. Using data from the Study to Explore Early Development, a large multi-site case-control study, the analyses included 2,963 children aged 2-5 years with ASD, other developmental disabilities (DD group), and a population-based control group (POP). Percentages of index children with older siblings with select developmental, psychiatric, and neurologic conditions were estimated and compared across index child study groups using chi-square tests and multivariable modified Poisson regression. In adjusted analyses, children in the ASD group were significantly more likely than children in the POP group to have one or more older siblings with ASD, developmental delay, attention-deficit/hyperactivity disorder, intellectual disability, sensory integration disorder (SID), speech/language delays, or a psychiatric diagnosis (adjusted prevalence ratio [aPR] range: 1.4-3.7). Children in the DD group were significantly more likely than children in the POP group to have an older sibling with most of the aforementioned conditions, except for intellectual disability and psychiatric diagnosis (aPR range: 1.4-2.2). Children in the ASD group were significantly more likely than children in the DD group to have one or more older siblings with ASD, developmental delay, SID, or a psychiatric diagnosis (aPR range: 1.4-1.9). These findings suggest that developmental disorders cluster in families. Increased monitoring and screening for ASD and other DDs may be warranted when an older sibling has a DD diagnosis or symptoms.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38942957

RESUMEN

Psychiatric research encompasses diverse methodologies to understand the complex interplay between neurochemistry and behavior in mental health disorders. Despite significant advancements in pharmacological interventions, there remains a critical gap in understanding the precise functional changes underlying psychiatric conditions and the mechanisms of action of therapeutic agents. Genetically encoded sensors have emerged as powerful tools to address these challenges by enabling real-time monitoring of neurochemical dynamics in specific neuronal populations. This prospective explores the utility of neurotransmitter binding genetically encoded sensors in uncovering the nature of neuronal dysregulation underpinning mental illness, assessing the impact of pharmaceutical interventions, and facilitating the discovery of novel treatments.

14.
Nat Commun ; 15(1): 4982, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862504

RESUMEN

Various noncollinear spin textures and magnetic phases have been predicted in twisted two-dimensional CrI3 due to competing ferromagnetic (FM) and antiferromagnetic (AFM) interlayer exchange from moiré stacking-with potential spintronic applications even when the underlying material possesses a negligible Dzyaloshinskii-Moriya or dipole-dipole interaction. Recent measurements have shown evidence of coexisting FM and AFM layer order in small-twist-angle CrI3 bilayers and double bilayers. Yet, the nature of the magnetic textures remains unresolved and possibilities for their manipulation and electrical readout are unexplored. Here, we use tunneling magnetoresistance to investigate the collective spin states of twisted double-bilayer CrI3 under both out-of-plane and in-plane magnetic fields together with detailed micromagnetic simulations of domain dynamics based on magnetic circular dichroism. Our results capture hysteretic and anisotropic field evolutions of the magnetic states and we further uncover two distinct non-volatile spin textures (out-of-plane and in-plane domains) at ≈1° twist angle, with a different global tunneling resistance that can be switched by magnetic field.

15.
Sci Total Environ ; 945: 174028, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889818

RESUMEN

Silicosis, recognized as a severe global public health issue, is an irreversible pulmonary fibrosis caused by the long-term inhalation of silica particles. Given the intricate pathogenesis of silicosis, there is no effective intervention measure, which poses a severe threat to public health. Our previous study reported that dysbiosis of lung microbiota is associated with the development of pulmonary fibrosis, potentially involving the lipopolysaccharides/toll-like receptor 4 pathway. Similarly, the process of pulmonary fibrosis is accompanied by alterations in metabolic pathways. This study employed a combined approach of 16S rDNA sequencing and metabolomic analysis to investigate further the role of lung microbiota in silicosis delving deeper into the potential pathogenesis of silicosis. Silica exposure can lead to dysbiosis of the lung microbiota and the occurrence of pulmonary fibrosis, which was alleviated by a combination antibiotic intervention. Additionally, significant metabolic disturbances were found in silicosis, involving 85 differential metabolites among the three groups, which are mainly focused on amino acid metabolic pathways. The changed lung metabolites showed a substantial correlation with lung microbiota. The relative abundance of Pseudomonas negatively correlated with L-Aspartic acid, L-Glutamic acid, and L-Threonine levels. These results indicate that dysbiosis in pulmonary microbiota exacerbates silica-induced fibrosis through impacts on amino acid metabolism, providing new insights into the potential mechanisms and interventions of silicosis.


Asunto(s)
Aminoácidos , Pulmón , Microbiota , Fibrosis Pulmonar , Dióxido de Silicio , Silicosis , Microbiota/efectos de los fármacos , Pulmón/microbiología , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/microbiología , Fibrosis Pulmonar/metabolismo , Aminoácidos/metabolismo , Silicosis/metabolismo , Disbiosis/inducido químicamente , Masculino
16.
Wei Sheng Yan Jiu ; 53(3): 441-454, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38839586

RESUMEN

OBJECTIVE: To investigate the effects of long-term(7 days and 14 days) bisphenol S(BPS) exposure on the ERß-MAPK signaling pathway, hormone secretion phenotype and cell cycle in human normal ovarian epithelial cells IOSE 80 at actual human exposure level. METHODS: Physiologically based pharmacokinetic model combined with BPS levels in the serum of women along the Yangtze River in China was used to determine the dosing concentrations of BPS, and vehicle control and 17 ß-estradiol(E_2) control were used. Complete medium with corresponding concentrations(0, 6.79×10~(-6), 6.79×10~(-4), 6.79×10~(-2), 6.79 µmol/L BPS and 10 nmol/L E_2) was replaced every 2 days. mRNA expressions of estrogen receptor(ERß and GPR30), key genes in MAPK signaling pathway(P38/JNK/ERK signaling pathway) and gonadotropin-releasing hormone-related genes(GnRH-I, GnRH-II and GnRH-R) were measured by qPCR. The ERß-MAPK signaling pathway inhibitors were employed to detect the effect of long-term exposure to BPS on the cell cycle by flow cytometry. Dose-response relationship analysis was performed to calculate the benchmark does lower confidence limits. RESULTS: Compared to the vehicle control, after 7 days exposure to BPS, the ratio of G_2/M phase was significantly increased(P<0.05), and the mRNA expressions of GnRH-I, GnRH-II and GnRH-R were significantly decreased(P<0.05); after 14 days exposure to BPS, the mRNA expressions of ESR2, MAPK3, and MAPK9 were significantly increased(P<0.05), and the mRNA expressions of GnRH-II and GnRH-R were significantly decreased(P<0.05). The GnRH-II mRNA expression level of BPS treatment for 7 days; the G_0/G_1 phase ratio, MAPK3 and MAPK8 mRNA expression level of BPS exposure for 14 days; and the GnRH-I mRNA expression level after BPS treatment for 7 days and 14 days showed a good dose-response relationship but with poor fit. CONCLUSION: Long-term low-dose exposure to BPS may cause cell cycle arrest by activating the ERß-MAPK signaling pathway, and may lead to changes in the hormone secretion of IOSE 80 cells.


Asunto(s)
Células Epiteliales , Receptor beta de Estrógeno , Sistema de Señalización de MAP Quinasas , Ovario , Fenoles , Sulfonas , Humanos , Fenoles/toxicidad , Femenino , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Sulfonas/toxicidad , Línea Celular
17.
ChemSusChem ; : e202400977, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831717

RESUMEN

Electrocatalytic water splitting shows great potential for producing clean and green hydrogen, but it is hindered by slow reaction kinetics. Advanced electrocatalysts are needed to lower the energy barriers. The establishment of built-in electric fields (BIEF) in heterointerfaces has been found to be beneficial for speeding up electron transfer, increasing electrical conductivity, adjusting the local reaction environment, and optimizing the chemisorption energy with intermediates. Engineering and modifying the BIEF in heterojunctions offer significant opportunities to enhance the electronic properties of catalysts, thus improving the reaction kinetics. This comprehensive review focuses on the latest advances in BIEF engineering in heterojunction catalysts for efficient water electrolysis. It highlights the fundamentals, engineering, modification, characterization, and application of BIEF in electrocatalytic water splitting. The review also discusses the challenges and future prospects of BIEF engineering. Overall, this review provides a thorough examination of BIEF engineering for the next generation of water electrolysis devices.

18.
J Med Virol ; 96(6): e29724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837426

RESUMEN

Although the burden of the human immunodeficiency virus (HIV) in the Asia-Pacific region is increasingly severe, comprehensive evidence of the burden of HIV is scarce. We aimed to report the burden of HIV in people aged 15-79 years from 1990 to 2019 using data from the Global Burden of Disease Study (GBD) 2019. We analyzed rates of age-standardized disability-adjusted life years (ASDR), age-standardized mortality (ASMR), and age-standardized incidence (ASIR) in our age-period-cohort analysis by sociodemographic index (SDI). According to HIV reports in 2019 from 29 countries in the Asia-Pacific region, the low SDI group in Papua New Guinea had the highest ASDR, ASMR, and ASIR. From 1990 to 2019, the ASDR, ASIR, and ASMR of persons with acquired immune deficiency syndrome (AIDS) increased in 21 (72%) of the 29 countries in the Asia-Pacific region. During the same period, the disability-adjusted life years (DALYs) of AIDS patients in the low SDI group in the region grew the fastest, particularly in Nepal. The incidence of HIV among individuals aged 20-30 years in the low-middle SDI group was higher than that of those in the other age groups. In 2019, unsafe sex was the main cause of HIV-related ASDR in the region's 29 countries, followed by drug use. The severity of the burden of HIV/AIDS in the Asia-Pacific region is increasing, especially among low SDI groups. Specific public health policies should be formulated based on the socioeconomic development level of each country to alleviate the burden of HIV/AIDS.


Asunto(s)
Carga Global de Enfermedades , Infecciones por VIH , Humanos , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Infecciones por VIH/epidemiología , Infecciones por VIH/mortalidad , Masculino , Femenino , Anciano , Carga Global de Enfermedades/tendencias , Asia/epidemiología , Estudios de Cohortes , Incidencia , Años de Vida Ajustados por Discapacidad , Costo de Enfermedad
19.
Toxics ; 12(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38922110

RESUMEN

The main objective of our study is to explore the associations between combined exposure to urinary heavy metals and high remnant cholesterol (HRC), a known cardiovascular risk factor. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, we conducted a cross-sectional analysis of 5690 participants, assessing urinary concentrations of ten heavy metals. Ten heavy metals in urine were measured by inductively coupled plasma mass spectrometry (ICP-MS). Fasting residual cholesterol ≥0.8 mmol/L was defined as HRC (using blood samples). Statistical analyses included weighted multivariable logistic regression, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the associations of heavy metal exposure with HRC. Stratified analyses based on individual characteristics were also conducted. Multivariable logistic regression found that the four metals (OR Q4 vs. Q1: 1.33, 95% CI: 1.01-1.75 for barium (Ba); OR Q4 vs. Q1: 1.50, 95% CI: 1.16-1.94 for cadmium (Cd); OR Q4 vs. Q1: 1.52, 95% CI: 1.15-2.01 for mercury (Hg); OR Q4 vs. Q1: 1.35, 95% CI: 1.06-1.73 for lead (Pb)) were positively correlated with the elevated risk of HRC after adjusting for covariates. In addition, all three mixed models, including WQS (OR: 1.25; 95% CI: 1.07-1.46), qgcomp (OR: 1.17; 95% CI: 1.03-1.34), and BKMR, consistently showed a significant positive correlation between co-exposure to heavy metal mixtures and HRC, with Ba and Cd being the main contributors within the mixture. These associations were more pronounced in younger adults (20 to 59 years), males, and those with a higher body mass index status (≥25 kg/m2). Our findings reveal a significant relationship between exposure to the mixture of heavy metals and HRC among US adults, with Ba and Cd being the major contributors to the mixture's overall effect. Public health efforts aimed at reducing heavy metal exposure can help prevent HRC and, in turn, cardiovascular disease.

20.
Heliyon ; 10(9): e30651, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765063

RESUMEN

Silicosis is a progressive pulmonary fibrosis disease caused by long-term inhalation of silica. The early diagnosis and timely implementation of intervention measures are crucial in preventing silicosis deterioration further. However, the lack of screening and diagnostic measures for early-stage silicosis remains a significant challenge. In this study, silicosis models of varying severity were established through a single exposure to silica with different doses (2.5mg/mice or 5mg/mice) and durations (4 weeks or 12 weeks). The diagnostic performance of computed tomography (CT) quantitative analysis was assessed using lung density biomarkers and the lung density distribution histogram, with a particular focus on non-aerated lung volume. Subsequently, we developed and evaluated a stacking learning model for early diagnosis of silicosis after extracting and selecting features from CT images. The CT quantitative analysis reveals that while the lung densitometric biomarkers and lung density distribution histogram, as traditional indicators, effectively differentiate severe fibrosis models, they are unable to distinguish early-stage silicosis. Furthermore, these findings remained consistent even when employing non-aerated areas, which is a more sensitive indicator. By establishing a radiomics stacking learning model based on non-aerated areas, we can achieve remarkable diagnostic performance to distinguish early-stage silicosis, which can provide a valuable tool for clinical assistant diagnosis. This study reveals the potential of using non-aerated lung areas as a region of interest in stacking learning for early diagnosis of silicosis, providing new insights into early detection of this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...