RESUMEN
Thermal treatment is effective for the removal of perfluorooctanoic acid (PFOA). However, how temperatures, heating methods, and granular activated carbon (GAC) influence pyrolysis of PFOA, and emission risks are not fully understood. We studied thermal behaviors of PFOA at various conditions and analyzed gaseous products using real-time detection technologies and gas chromatography-mass spectrometry (GC-MS). The thermal decomposition of PFOA is surface-mediated. On the surface of quartz, PFOA decomposed into perfluoro-1-heptene and perfluoro-2-heptene, while on GAC, it tended to decompose into 1 H-perfluoroheptane (C7HF15). Neutral PFOA started evaporating around 100 â without decomposition in ramp heating. During pyrolysis, when PFOA was pre-adsorbed onto GAC, it was mineralized into SiF4 and produced more than 45 volatile organic fluorine (VOF) byproducts, including perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs). The VOF products were longer-chain (hydro)fluorocarbons (C4-C7) at low temperatures (< 500 â) and became shorter-chain (C1-C4) at higher temperatures (> 600 â). PFOA transformations include decarboxylation, VOF desorption, further organofluorine decomposition and mineralization in ramp heating of PFOA-laden GAC. Decarboxylation initiates at 120 â, but other processes require higher temperatures (>200 â). These results offer valuable information regarding the thermal regeneration of PFAS-laden GAC and further VOF control with the afterburner or thermal oxidizer.
RESUMEN
The production of e-cigarette aerosols through vaping processes is known to cause the formation of various free radicals and reactive oxygen species (ROS). Despite the well-known oxidative potential and cytotoxicity of fresh vaping emissions, the effects of chemical aging on exhaled vaping aerosols by indoor atmospheric oxidants are yet to be elucidated. Terpenes are commonly found in e-liquids as flavor additives. In the presence of indoor ozone (O3), e-cigarette aerosols that contain terpene flavorings can undergo chemical transformations, further producing ROS and reactive carbonyl species. Here, we simulated the aging process of the e-cigarette emissions in a 2 m3 FEP film chamber with 100 ppbv of O3 exposure for an hour. The aged vaping aerosols, along with fresh aerosols, were collected to detect the presence of ROS. The aged particles exhibited 2- to 11-fold greater oxidative potential, and further analysis showed that these particles formed a greater number of radicals in aqueous conditions. The aging process induced the formation of various alkyl hydroperoxides (ROOH), and through iodometric quantification, we saw that our aged vaping particles contained significantly greater amounts of these hydroperoxides than their fresh counterparts. Bronchial epithelial cells exposed to aged vaping aerosols exhibited an upregulation of the oxidative stress genes, HMOX-1 and GSTP1, indicating the potential for inhalation toxicity. This work highlights the indirect danger of vaping in environments with high ground-level O3, which can chemically transform e-cigarette aerosols into new particles that can induce greater oxidative damage than fresh e-cigarette aerosols. Given that the toxicological characteristics of e-cigarettes are mainly associated with the inhalation of fresh aerosols in current studies, our work may provide a perspective that characterizes vaping exposure under secondhand or thirdhand conditions as a significant health risk.
Asunto(s)
Aromatizantes , Estrés Oxidativo , Ozono , Especies Reactivas de Oxígeno , Terpenos , Vapeo , Ozono/química , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Humanos , Aromatizantes/química , Aromatizantes/análisis , Vapeo/efectos adversos , Terpenos/química , Sistemas Electrónicos de Liberación de Nicotina , Aerosoles/químicaRESUMEN
E-cigarette aerosols contain a complex mixture of harmful and potentially harmful chemicals. Once released into the environment, they evolve and become new sources of indoor air pollutants that could pose a significant threat to both users and non-users. However, current understanding of the physicochemical properties of e-cigarette aerosol constituents that govern gas-particle partitioning in the atmosphere is limited, making it difficult to estimate the health risks associated with exposure. Here, we used correlation gas chromatography (C-GC) and two-dimensional volatility basis set (2D-VBS) methods to determine the vapor pressures and volatility for commonly reported toxic and irritating e-cigarette aerosol constituents. The vapor pressures of target compounds at 298 K were estimated from the Antoine-type linear relationship between the vapor pressure of reference standards and their retention times. Our C-GC results showed an overall positive correlation (R = 0.84) with estimates using the EPI (Estimation Programs Interface) Suite. The volatility calculated by 2D-VBS correlates well with the calculated vapor pressure from both C-GC (R = 0.82) and EPI Suite (R = 0.85). The volatility distribution also indicated fresh e-cigarette aerosol constituents are mainly more volatile organic compounds. Our case study revealed that low-vapor-pressure compounds (e.g., σ-dodecalactone, γ-decalactone, and maltol) become enriched in the e-cigarette aerosols within 2 hours following vaping emissions. Overall, these findings demonstrate the applicability of the C-GC and 2D-VBS methods for determining the physiochemical properties of e-cigarette aerosol constituents, which can aid in assessing the dynamic chemical composition of e-cigarette aerosols and exposures to vaping emissions in indoor environments.
RESUMEN
Light-absorbing secondary organic aerosols (SOAs), also known as secondary brown carbon (BrC), are major components of wildfire smoke that can have a significant impact on the climate system; however, how environmental factors such as relative humidity (RH) influence their formation is not fully understood, especially for heterocyclic precursors. We conducted chamber experiments to investigate secondary BrC formation from the nighttime oxidation of furan and pyrrole, two primary heterocyclic precursors in wildfires, in the presence of pre-existing particles at RH < 20% and â¼ 50%. Our findings revealed that increasing RH significantly affected the size distribution dynamics of both SOAs, with pyrrole SOA showing a stronger potential to generate ultrafine particles via intensive nucleation processes. Higher RH led to increased mass fractions of oxygenated compounds in both SOAs, suggesting enhanced gas-phase and/or multiphase oxidation under humid conditions. Moreover, higher RH reduced the mass absorption coefficients of both BrC, contrasting with those from homocyclic precursors, due to the formation of non-absorbing high-molecular-weight oxygenated compounds and the decreasing mass fractions of molecular chromophores. Overall, our findings demonstrate the unique RH dependence of secondary BrC formation from heterocyclic precursors, which may critically modulate the radiative effects of wildfire smoke on climate change.
RESUMEN
Oxygenated organic molecules (OOMs) are critical intermediates linking volatile organic compound oxidation and secondary organic aerosol (SOA) formation. Yet, the understanding of OOM components, formation mechanism, and impacts are still limited, especially for urbanized regions with a cocktail of anthropogenic emissions. Herein, ambient measurements of OOMs were conducted at a regional background site in South China in 2018. The molecular characteristics of OOMs revealed dominant nitrogen-containing products, and the influences of different factors on OOM composition and oxidation state were elucidated. Positive matrix factorization analysis resolved the complex OOM species to factors featured with fingerprint species from different oxidation pathways. A new method was developed to identify the key functional groups of OOMs, which successfully classified the majority species into carbonyls (8%), hydroperoxides (7%), nitrates (17%), peroxyl nitrates (10%), dinitrates (13%), aromatic ring-retaining species (6%), and terpenes (7%). The volatility estimation of OOMs was improved based on their identified functional groups and was used to simulate the aerosol growth process contributed by the condensation of those low-volatile OOMs. The results demonstrate the predominant role of OOMs in contributing sub-100 nm particle growth and SOA formation and highlight the importance of dinitrates and anthropogenic products from multistep oxidation.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Hong Kong , Nitratos , Terpenos , Aerosoles/análisisRESUMEN
Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (â¼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.