Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107311, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657866

RESUMEN

The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.

2.
J Clin Invest ; 134(10)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512451

RESUMEN

Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.


Asunto(s)
Alanina-ARNt Ligasa , Transducción de Señal , Neoplasias Gástricas , Factores de Transcripción , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ácido Láctico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/metabolismo
3.
J Agric Food Chem ; 72(14): 7727-7734, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530940

RESUMEN

To discover novel transketolase (TKL, EC 2.2.1.1) inhibitors with potential herbicidal applications, a series of pyrazole acyl thiourea derivatives were designed based on a previously obtained pyrazolamide acyl lead compound, employing a scaffold hopping strategy. The compounds were synthesized, their structures were characterized, and they were evaluated for herbicidal activities. The results indicate that 7a exhibited exceptional herbicidal activity against Digitaria sanguinalis and Amaranthus retroflexus at a dosage of 90 g ai/ha, using the foliar spray method in a greenhouse. This performance is comparable to that of commercial products, such as nicosulfuron and mesotrione. Moreover, 7a showed moderate growth inhibitory activity against the young root and stem of A. retroflexus at 200 mg/L in the small cup method, similar to that of nicosulfuron and mesotrione. Subsequent mode-of-action verification experiments revealed that 7a and 7e inhibited Setaria viridis TKL (SvTKL) enzyme activity, with IC50 values of 0.740 and 0.474 mg/L, respectively. Furthermore, they exhibited inhibitory effects on the Brassica napus acetohydroxyacid synthase enzyme activity. Molecular docking predicted potential interactions between these (7a and 7e) and SvTKL. A greenhouse experiment demonstrated that 7a exhibited favorable crop safety at 150 g ai/ha. Therefore, 7a is a promising herbicidal candidate that is worthy of further development.


Asunto(s)
Ciclohexanonas , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Herbicidas/farmacología , Herbicidas/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Esqueleto , Pirazoles/farmacología , Pirazoles/química , Tiourea
4.
SLAS Discov ; 26(3): 364-372, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32914673

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for the assessment of drug proarrhythmic potential through multielectrode array (MEA). HiPSC-CM cultures beat spontaneously with a wide range of frequencies, however, which could affect drug-induced changes in repolarization. Pacing hiPSC-CMs at a physiological heart rate more closely resembles the state of in vivo ventricular myocytes and permits the standardization of test conditions to improve consistency. In this study, we systematically investigated the time window of stable ion currents in high-purity hiPSC-derived ventricular cardiomyocytes (hiPSC-vCMs) and confirmed that these cells could be used to correctly predict the proarrhythmic risk of Comprehensive In Vitro Proarrhythmia Assay (CiPA) reference compounds. To evaluate drug proarrhythmic potentials at a physiological beating rate, we used a MEA to electrically pace hiPSC-vCMs, and we recorded regular field potential waveforms in hiPSC-vCMs treated with DMSO and 10 CiPA reference drugs. Prolongation of field potential duration was detected in cells after exposure to high- and intermediate-risk drugs; in addition, drug-induced arrhythmia-like events were observed. The results of this study provide a simple and feasible method to investigate drug proarrhythmic potentials in hiPSC-CMs at a physiological beating rate.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/farmacología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/efectos de los fármacos , Fenetilaminas/efectos adversos , Quinidina/efectos adversos , Sulfonamidas/efectos adversos , Potenciales de Acción/fisiología , Arritmias Cardíacas/prevención & control , Calcio/metabolismo , Cationes Bivalentes , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Transporte Iónico/efectos de los fármacos , Microelectrodos , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Nifedipino/farmacología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Sotalol/efectos adversos , Tetrodotoxina/antagonistas & inhibidores , Tetrodotoxina/toxicidad , Verapamilo/farmacología
5.
Biopolymers ; 111(12): e23404, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33075850

RESUMEN

Spiders can produce up to seven different types of silks or glues with different mechanical properties. Of these, flagelliform (Flag) silk is the most elastic, and aciniform (AcSp1) silk is the toughest. To produce a chimeric spider silk (spidroin) FlagR -AcSp1R , we fused one repetitive module of flagelliform silk from Araneus ventricosus and one repetitive module of aciniform silk from Argiope trifasciata. The recombinant protein expressed in E. coli formed silk-like fibers by manual-drawing. CD analysis showed that the secondary structure of FlagR -AcSp1R spidroin remained stable during the gradual reduction of pH from 7.0 to 5.5. The spectrum of FTIR indicated that the secondary structure of FlagR -AcSp1R changed from α-helix to ß-sheet. The conformation change of FlagR -AcSp1R was similar to other spidroins in the fiber formation process. SEM analysis revealed that the mean diameter of the fibers was around 1 ~ 2 µm, and the surface was smooth and uniform. The chimeric fibers exhibited superior toughness (~33.1 MJ/m3 ) and tensile strength (~261.4 MPa). This study provides new insight into design of chimeric spider silks with high mechanical properties.


Asunto(s)
Arañas/clasificación , Arañas/metabolismo , Secuencia de Aminoácidos , Animales , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Repetitivas de Aminoácido , Arañas/genética , Resistencia a la Tracción
6.
Int J Biol Macromol ; 145: 437-444, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31843611

RESUMEN

Orb-weaving spiders produce a diversity of silk fibers throughout their entire lifecycle, and each silk type is given a specific purpose. As a dry fiber material with wet glue, pyriform silks are different from other silk fibers and make the attachment discs which are used for bonding fibers together and attaching dragline silk to other substrates. To date, only two full-length pyriform spidroin 1 (PySp1) gene sequences were identified. Here we present a novel full-length pyriform spidroin 2 (PySp2) from orb-weaving spider, Araneus ventricosus. Although the A. ventricosus PySp2 lack the long linker regions, the central repetitive region of PySp2 is more complex than PySp1 and can be classified into four types of repetitive regions including three novel repetitive sequences and one type of repetitive region that is similar to PySp1 repeats. Prediction of hydrophobicity of A. ventricosus PySp2 reveals the two new repetitive regions display strong hydrophilicity. Analysis of CD spectrum and secondary structure prediction for A. ventricosus PySp2 repeat unit reveal α-helix conformation dominates the repetitive region. Furthermore, recombinant protein-based artificial fibers show the single repeat unit is sufficient for self-assembling into silk fiber.


Asunto(s)
Fibroínas/química , Conformación Proteica en Hélice alfa , Seda/química , Secuencia de Aminoácidos/genética , Animales , Fibroínas/genética , Fibroínas/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Filogenia , Seda/genética , Seda/ultraestructura , Arañas/química
7.
Stem Cell Res ; 19: 94-103, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28110125

RESUMEN

Most existing culture media for cardiac differentiation of human pluripotent stem cells (hPSCs) contain significant amounts of albumin. For clinical transplantation applications of hPSC-derived cardiomyocytes (hPSC-CMs), culturing cells in an albumin containing environment raises the concern of pathogen contamination and immunogenicity to the recipient patients. In addition, batch-to-batch variation of albumin may cause the inconsistent of hPSC cardiac differentiation. Here, we demonstrated that antioxidants l-ascorbic acid, trolox, N-acetyl-l-cysteine (NAC) and sodium pyruvate could functionally substitute albumin in the culture medium, and formulated an albumin-free, chemical-defined medium (S12 medium). We showed that S12 medium could support efficient hPSC cardiac differentiation with significantly improved reproducibility, and maintained long-term culture of hPSC-CMs. Furthermore, under chemical-defined and albumin-free conditions, human-induced pluripotent stem cells (hiPSCs) were established, and differentiated into highly homogenous atrial and ventricular myocytes in a scalable fashion with normal electrophysiological properties. Finally, we characterized the activity of three typical cardiac ion channels of those cells, and demonstrated that hPSC-derived ventricular cardiomyocytes (hPSC-vCMs) were suitable for drug cardiac safety evaluation. In summary, this simplified, chemical-defined and albumin-free culture medium supports efficient generation and maintaining of hPSC-CMs and facilitates both research and clinical applications of these cells.


Asunto(s)
Medios de Cultivo/química , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Potenciales de Acción/efectos de los fármacos , Antioxidantes/farmacología , Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Nifedipino/farmacología , Técnicas de Placa-Clamp , Piperidinas/farmacología , Células Madre Pluripotentes/metabolismo , Piridinas/farmacología , Tretinoina/farmacología
8.
Stem Cells Dev ; 26(7): 528-540, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27927069

RESUMEN

The epicardium promotes neovascularization and cardiomyocyte regeneration by generating vascular smooth muscle cells (SMCs) and producing regenerative factors after adult heart infarction. It is therefore a potential cell resource for repair of the injured heart. However, the epicardium also participates in fibrosis and scarring of the injured heart, complicating its use in regenerative medicine. In this study, we report coexpression of TBX18 and WT1 in the majority of epicardial cells during mouse embryonic epicardial development. Furthermore, we describe a convenient chemically defined, immunogen-free, small molecule-based method for generating TBX18+/WT1+ epicardial-like cell populations with 80% homogeneity from human pluripotent stem cells by modulation of the WNT and retinoic acid signaling pathways. These epicardial-like cells exhibited characteristic epicardial cell morphology following passaging and differentiation into functional SMCs or cardiac fibroblast-like cells. Our findings add to existing understanding of human epicardial development and provide an efficient and stable method for generating both human epicardial-like cells and SMCs.


Asunto(s)
Diferenciación Celular/fisiología , Miocitos Cardíacos/citología , Miocitos del Músculo Liso/citología , Pericardio/citología , Células Madre Pluripotentes/citología , Animales , Fibroblastos/citología , Humanos , Ratones , Proteínas Represoras/genética , Proteínas de Dominio T Box/genética , Proteínas WT1/genética
9.
J Am Soc Nephrol ; 27(11): 3331-3344, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26961349

RESUMEN

Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Ácido Dicloroacético/uso terapéutico , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Animales , Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA