Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (135)2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29782006

RESUMEN

The importance of sharing experimental data in neuroscience grows with the amount and complexity of data acquired and various techniques used to obtain and process these data. However, the majority of experimental data, especially from individual studies of regular-sized laboratories never reach wider research community. A graphical user interface (GUI) engine called Neurovascular Network Explorer 2.0 (NNE 2.0) has been created as a tool for simple and low-cost sharing and exploring of vascular imaging data. NNE 2.0 interacts with a database containing optogenetically-evoked dilation/constriction time-courses of individual vessels measured in mice somatosensory cortex in vivo by 2-photon microscopy. NNE 2.0 enables selection and display of the time-courses based on different criteria (subject, branching order, cortical depth, vessel diameter, arteriolar tree) as well as simple mathematical manipulation (e.g. averaging, peak-normalization) and data export. It supports visualization of the vascular network in 3D and enables localization of the individual functional vessel diameter measurements within vascular trees. NNE 2.0, its source code, and the corresponding database are freely downloadable from UCSD Neurovascular Imaging Laboratory website1. The source code can be utilized by the users to explore the associated database or as a template for databasing and sharing their own experimental results provided the appropriate format.


Asunto(s)
Corteza Cerebral/metabolismo , Corteza Somatosensorial/metabolismo , Sistema Vasomotor/patología , Animales , Bases de Datos Factuales , Ratones , Redes Neurales de la Computación
3.
Artículo en Inglés | MEDLINE | ID: mdl-27574309

RESUMEN

The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Animales , Mapeo Encefálico/instrumentación , Circulación Cerebrovascular , Humanos , Imagen por Resonancia Magnética/instrumentación , Ratones , Modelos Neurológicos , Oxígeno/metabolismo , Ratas
4.
Elife ; 52016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27244241

RESUMEN

Identification of the cellular players and molecular messengers that communicate neuronal activity to the vasculature driving cerebral hemodynamics is important for (1) the basic understanding of cerebrovascular regulation and (2) interpretation of functional Magnetic Resonance Imaging (fMRI) signals. Using a combination of optogenetic stimulation and 2-photon imaging in mice, we demonstrate that selective activation of cortical excitation and inhibition elicits distinct vascular responses and identify the vasoconstrictive mechanism as Neuropeptide Y (NPY) acting on Y1 receptors. The latter implies that task-related negative Blood Oxygenation Level Dependent (BOLD) fMRI signals in the cerebral cortex under normal physiological conditions may be mainly driven by the NPY-positive inhibitory neurons. Further, the NPY-Y1 pathway may offer a potential therapeutic target in cerebrovascular disease.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Neuropéptido Y/farmacología , Acoplamiento Neurovascular/efectos de los fármacos , Receptores de Neuropéptido Y/metabolismo , Vasoconstrictores/farmacología , Animales , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/genética , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Diagnóstico por Imagen , Expresión Génica , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Optogenética , Especificidad de Órganos , Oxígeno/metabolismo , Estimulación Luminosa , Unión Proteica , Receptores de Neuropéptido Y/genética , Vasoconstricción/efectos de los fármacos
5.
Opt Express ; 24(26): 30173-30187, 2016 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-28059294

RESUMEN

Non-degenerate 2-photon excitation (ND-2PE) of a fluorophore with two laser beams of different photon energies offers an independent degree of freedom in tuning of the photon flux for each beam. This feature takes advantage of the infrared wavelengths used in degenerate 3-photon excitation (D-3PE) microscopy to achieve increased penetration depths, while preserving a relatively high 2-photon excitation cross section in comparison to that of D-3PE. Here, using spatially and temporally aligned Ti:Sapphire laser and optical parametric oscillator beams operating at near infrared (NIR) and short-wavelength infrared (SWIR) optical frequencies, we employ ND-2PE and provide a practical demonstration that a constant fluorophore emission intensity is achievable deeper into a scattering medium using ND-2PE as compared to the commonly used degenerate 2-photon excitation (D-2PE).

6.
Front Neuroinform ; 8: 56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904401

RESUMEN

We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.

7.
J Neurosci ; 33(19): 8411-22, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658179

RESUMEN

Calcium-dependent release of vasoactive gliotransmitters is widely assumed to trigger vasodilation associated with rapid increases in neuronal activity. Inconsistent with this hypothesis, intact stimulus-induced vasodilation was observed in inositol 1,4,5-triphosphate (IP3) type-2 receptor (R2) knock-out (KO) mice, in which the primary mechanism of astrocytic calcium increase-the release of calcium from intracellular stores following activation of an IP3-dependent pathway-is lacking. Further, our results in wild-type (WT) mice indicate that in vivo onset of astrocytic calcium increase in response to sensory stimulus could be considerably delayed relative to the simultaneously measured onset of arteriolar dilation. Delayed calcium increases in WT mice were observed in both astrocytic cell bodies and perivascular endfeet. Thus, astrocytes may not play a role in the initiation of blood flow response, at least not via calcium-dependent mechanisms. Moreover, an increase in astrocytic intracellular calcium was not required for normal vasodilation in the IP3R2-KO animals.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Vasodilatación/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Adenosina Trifosfato/farmacología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Cicloleucina/análogos & derivados , Cicloleucina/farmacología , Dextranos/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Estimulación Eléctrica , Femenino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Hipercalcemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/farmacología , Transducción de Señal , Factores de Tiempo , Vasodilatación/efectos de los fármacos
8.
J Cereb Blood Flow Metab ; 32(7): 1259-76, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22252238

RESUMEN

In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.


Asunto(s)
Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Metabolismo Energético/fisiología , Imagenología Tridimensional/métodos , Imagenología Tridimensional/tendencias , Animales , Encéfalo/irrigación sanguínea , Mapeo Encefálico/métodos , Hemodinámica/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Imagenología Tridimensional/historia
9.
J Biomed Opt ; 16(1): 016006, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21280912

RESUMEN

Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as "depth sensitivity." Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 µm for NA≤0.2 or focal plane depth≤300 µm. (ii) More than 97% of the signal comes from the top 500 µm of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and/or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation.


Asunto(s)
Encéfalo/citología , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Modelos Neurológicos , Modelos Estadísticos , Fotograbar/métodos , Algoritmos , Animales , Simulación por Computador , Humanos , Aumento de la Imagen/métodos , Luz , Método de Montecarlo , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
10.
Proc Natl Acad Sci U S A ; 107(34): 15246-51, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696904

RESUMEN

Changes in neuronal activity are accompanied by the release of vasoactive mediators that cause microscopic dilation and constriction of the cerebral microvasculature and are manifested in macroscopic blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals. We used two-photon microscopy to measure the diameters of single arterioles and capillaries at different depths within the rat primary somatosensory cortex. These measurements were compared with cortical depth-resolved fMRI signal changes. Our microscopic results demonstrate a spatial gradient of dilation onset and peak times consistent with "upstream" propagation of vasodilation toward the cortical surface along the diving arterioles and "downstream" propagation into local capillary beds. The observed BOLD response exhibited the fastest onset in deep layers, and the "initial dip" was most pronounced in layer I. The present results indicate that both the onset of the BOLD response and the initial dip depend on cortical depth and can be explained, at least in part, by the spatial gradient of delays in microvascular dilation, the fastest response being in the deep layers and the most delayed response in the capillary bed of layer I.


Asunto(s)
Oxígeno/sangre , Corteza Somatosensorial/irrigación sanguínea , Animales , Arteriolas/anatomía & histología , Arteriolas/fisiología , Capilares/anatomía & histología , Capilares/fisiología , Circulación Cerebrovascular/fisiología , Hemodinámica/fisiología , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Microcirculación/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica , Ratas , Ratas Sprague-Dawley , Vasodilatación/fisiología
11.
J Neurosci ; 28(53): 14347-57, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19118167

RESUMEN

The present study addresses the relationship between blood flow and glucose consumption in rat primary somatosensory cortex (SI) in vivo. We examined bilateral neuronal and hemodynamic changes and 2-deoxyglucose (2DG) uptake, as measured by autoradiography, in response to unilateral forepaw stimulation. In contrast to the contralateral forepaw area, where neuronal activity, blood oxygenation/flow and 2DG uptake increased in unison, we observed, in the ipsilateral SI, a blood oxygenation/flow decrease and arteriolar vasoconstriction in the presence of increased 2DG uptake. Laminar electrophysiological recordings revealed an increase in ipsilateral spiking consistent with the observed increase in 2DG uptake. The vasoconstriction and the decrease in blood flow in the presence of an increase in 2DG uptake in the ipsilateral SI contradict the prominent metabolic hypothesis regarding the regulation of cerebral blood flow, which postulates that the state of neuroglial energy consumption determines the regional blood flow through the production of vasoactive metabolites. We propose that other factors, such as neuronal (and glial) release of messenger molecules, might play a dominant role in the regulation of blood flow in vivo in response to a physiological stimulus.


Asunto(s)
Circulación Cerebrovascular/fisiología , Desoxiglucosa/metabolismo , Potenciales Evocados Somatosensoriales/fisiología , Lateralidad Funcional/fisiología , Corteza Somatosensorial/metabolismo , Animales , Autorradiografía/métodos , Mapeo Encefálico , Radioisótopos de Carbono/metabolismo , Hemodinámica , Hemoglobinas/metabolismo , Oxihemoglobinas/metabolismo , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/irrigación sanguínea , Vasoconstricción/fisiología
12.
J Neurosci ; 27(16): 4452-9, 2007 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-17442830

RESUMEN

Synaptic transmission initiates a cascade of signal transduction events that couple neuronal activity to local changes in blood flow and oxygenation. Although a number of vasoactive molecules and specific cell types have been implicated, the transformation of stimulus-induced activation of neuronal circuits to hemodynamic changes is still unclear. We use somatosensory stimulation and a suite of in vivo imaging tools to study neurovascular coupling in rat primary somatosensory cortex. Our stimulus evoked a central region of net neuronal depolarization surrounded by net hyperpolarization. Hemodynamic measurements revealed that predominant depolarization corresponded to an increase in oxygenation, whereas predominant hyperpolarization corresponded to a decrease in oxygenation. On the microscopic level of single surface arterioles, the response was composed of a combination of dilatory and constrictive phases. Critically, the relative strength of vasoconstriction covaried with the relative strength of oxygenation decrease and neuronal hyperpolarization. These results suggest that a neuronal inhibition and concurrent arteriolar vasoconstriction correspond to a decrease in blood oxygenation, which would be consistent with a negative blood oxygenation level-dependent functional magnetic resonance imaging signal.


Asunto(s)
Arteriolas/fisiología , Corteza Cerebral/fisiología , Neuronas/fisiología , Oxígeno/sangre , Transmisión Sináptica/fisiología , Vasoconstricción/fisiología , Animales , Volumen Sanguíneo , Mapeo Encefálico , Hemoglobinas/metabolismo , Oxihemoglobinas/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Science ; 300(5625): 1553-5, 2003 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-12791987

RESUMEN

Femtosecond phase-coherent two-dimensional (2D) spectroscopy has been experimentally demonstrated as the direct optical analog of 2D nuclear magnetic resonance. An acousto-optic pulse shaper created a collinear three-pulse sequence with well-controlled and variable interpulse delays and phases,which interacted with a model atomic system of rubidium vapor. The desired nonlinear polarization was selected by phase cycling (coadding experimental results obtained with different interpulse phases). This method may enhance our ability to probe the femtosecond structural dynamics of macromolecules.


Asunto(s)
Estructura Molecular , Análisis Espectral/métodos , Fenómenos Químicos , Química Física , Análisis de Fourier , Rayos Láser , Espectroscopía de Resonancia Magnética/métodos , Matemática , Óptica y Fotónica , Fotones , Rubidio , Factores de Tiempo
14.
Opt Lett ; 27(18): 1634-6, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18026525

RESUMEN

We demonstrate a direct and sensitive technique for measuring two-photon absorption (TPA). An intensity-modulated femtosecond laser beam passes through a sample exhibiting TPA. A TPA signal at twice the modulation frequency is then generated and subsequently measured by a lock-in amplifier. The absolute TPA cross section of Rhodamine 6G at 800nm is found to be (15.3+/-2.0)x10(-50) cm(4) s/photon and agrees well with previously published results obtained with much higher intensity [J.Chem.Phys.112, 9201 (2000)]. Our method may be especially useful in measuring nonlinear absorptions of nonfluorescent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA