Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hemoglobin ; : 1-6, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693050

RESUMEN

Copy number variations (CNVs) involving the α-globin gene cluster can lead to an imbalance in the proportion of α- and ß-globin chains and consequently cause clinical symptoms of ß-thalassemia. In our case, a 6-year-old boy, clinically diagnosed with ß thalassemia intermedia, was admitted for further genetic diagnosis with his family. Targeted sequencing and third generation sequencing (TGS) were used to detect the possible variants of the thalassemia genes. Low-pass whole genome sequencing (lpWGS) was conducted to specify the exact location of relevant CNVs across the genome, which was then validated by multiplex ligation-dependent probe amplification.The results revealed that the patient had a heterozygous ß0 mutation of Codon17 (A > T) and a full duplication of the α-globin gene cluster, inherited from his mother and father, respectively. Besides, a novel point mutation within the 5' untranslated region of ß-Globin (HBB: c. -175 (G > A) was only detected in the patient. This study suggests that lpWGS seems a powerful alternative to detect large CNVs related to thalassemia with second intention for more information of the breakpoints and a simultaneous genome-scale detection of other pathogenic CNVs.

2.
Front Med (Lausanne) ; 11: 1254467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695016

RESUMEN

Background: Preeclampsia (PE) is a pregnancy complication defined by new onset hypertension and proteinuria or other maternal organ damage after 20 weeks of gestation. Although non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal abnormalities during pregnancy, its performance in combination with maternal risk factors to screen for PE has not been extensively validated. Our aim was to develop and validate classifiers that predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) profile and clinical risk factors. Methods: We retrospectively collected and analyzed NIPT data of 2,727 pregnant women aged 24-45 years from four hospitals in China, which had previously been used to screen for fetal aneuploidy at 12 + 0 ~ 22 + 6 weeks of gestation. According to the diagnostic criteria for PE and the time of diagnosis (34 weeks of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy controls were included. The wilcoxon rank sum test was used to identify the cfDNA profile for PE prediction. The Fisher's exact test and Mann-Whitney U-test were used to compare categorical and continuous variables of clinical risk factors between PE samples and healthy controls, respectively. Machine learning methods were performed to develop and validate PE classifiers based on the cfDNA profile and clinical risk factors. Results: By using NIPT data to analyze cfDNA coverages in promoter regions, we found the cfDNA profile, which was differential cfDNA coverages in gene promoter regions between PE and healthy controls, could be used to predict early- and late-onset PE. Maternal age, body mass index, parity, past medical histories and method of conception were significantly differential between PE and healthy pregnant women. With a false positive rate of 10%, the classifiers based on the combination of the cfDNA profile and clinical risk factors predicted early- and late-onset PE in four datasets with an average accuracy of 89 and 80% and an average sensitivity of 63 and 48%, respectively. Conclusion: Incorporating cfDNA profiles in classifiers might reduce performance variations in PE models based only on clinical risk factors, potentially expanding the application of NIPT in PE screening in the future.

4.
Am J Obstet Gynecol ; 229(5): 553.e1-553.e16, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37211139

RESUMEN

BACKGROUND: Preeclampsia, especially preterm preeclampsia and early-onset preeclampsia, is a life-threating pregnancy disorder, and the heterogeneity and complexity of preeclampsia make it difficult to predict risk and to develop treatments. Plasma cell-free RNA carries unique information from human tissue and may be useful for noninvasive monitoring of maternal, placental, and fetal dynamics during pregnancy. OBJECTIVE: This study aimed to investigate various RNA biotypes associated with preeclampsia in plasma and to develop classifiers to predict preterm preeclampsia and early-onset preeclampsia before diagnosis. STUDY DESIGN: We performed a novel, cell-free RNA sequencing method termed polyadenylation ligation-mediated sequencing to investigate the cell-free RNA characteristics of 715 healthy pregnancies and 202 pregnancies affected by preeclampsia before symptom onset. We explored differences in the abundance of different RNA biotypes in plasma between healthy and preeclampsia samples and built preterm preeclampsia and early-onset preeclampsia prediction classifiers using machine learning methods. Furthermore, we validated the performance of the classifiers using the external and internal validation cohorts and assessed the area under the curve and positive predictive value. RESULTS: We detected 77 genes, including messenger RNA (44%) and microRNA (26%), that were differentially expressed in healthy mothers and mothers with preterm preeclampsia before symptom onset, which could separate participants with preterm preeclampsia from healthy samples and that played critical functional roles in preeclampsia physiology. We developed 2 classifiers for predicting preterm preeclampsia and early-onset preeclampsia before diagnosis based on 13 cell-free RNA signatures and 2 clinical features (in vitro fertilization and mean arterial pressure), respectively. Notably, both classifiers showed enhanced performance when compared with the existing methods. The preterm preeclampsia prediction model achieved 81% area under the curve and 68% positive predictive value in an independent validation cohort (preterm, n=46; control, n=151); the early-onset preeclampsia prediction model had an area under the curve of 88% and a positive predictive value of 73% in an external validation cohort (early-onset preeclampsia, n=28; control, n=234). Furthermore, we demonstrated that downregulation of microRNAs may play vital roles in preeclampsia through the upregulation of preeclampsia-relevant target genes. CONCLUSION: In this cohort study, a comprehensive transcriptomic landscape of different RNA biotypes in preeclampsia was presented and 2 advanced classifiers with substantial clinical importance for preterm preeclampsia and early-onset preeclampsia prediction before symptom onset were developed. We demonstrated that messenger RNA, microRNA, and long noncoding RNA can simultaneously serve as potential biomarkers of preeclampsia, holding the promise of prevention of preeclampsia in the future. Abnormal cell-free messenger RNA, microRNA, and long noncoding RNA molecular changes may help to elucidate the pathogenic determinants of preeclampsia and open new therapeutic windows to effectively reduce pregnancy complications and fetal morbidity.


Asunto(s)
MicroARNs , Preeclampsia , ARN Largo no Codificante , Recién Nacido , Embarazo , Femenino , Humanos , Preeclampsia/diagnóstico , Preeclampsia/genética , Estudios de Cohortes , Placenta , MicroARNs/genética , ARN Mensajero , Biomarcadores
5.
Hemoglobin ; 47(1): 21-24, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36866928

RESUMEN

Here we report a novel ß-globin gene mutation in the promoter (HBB:c.-139_-138delAC) detected by next-generation sequencing (NGS). The proband was a 28-year-old Chinese male, living in Shenzhen City, Guangdong Province, who originates from Hunan Province. The red cell indices were almost normal, with a slightly decreased Red Cell volume Distribution Width(RDW). Capillary electrophoresis (CE) showed the Hb A (93.1%) value was below normal, while the Hb A2 (4.2%) and Hb F (2.7%) values were both beyond normal. A set of genetic tests of the α and ß-globin genes were then performed to determine whether the subject carried any causative mutations. The results of NGS revealed a two-base pair deletion at position -89 to -88(HBB:c.-139_-138delAC)in the heterozygous state, which was subsequently confirmed by Sanger sequencing.


Asunto(s)
Talasemia beta , Masculino , Humanos , Adulto , Talasemia beta/diagnóstico , Talasemia beta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , China , Mutación , Globinas beta/genética
6.
J Int Med Res ; 50(5): 3000605221099013, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35549527

RESUMEN

ß-thalassemia (ß-thal) is one of the most prevalent inherited blood disorders in Ganzhou, south China. Next-generation sequencing was used to screen for thalassemia carriers in the general population. During the screening, we identified a novel ß-thal variant in a 46-year-old Chinese man, which was validated by Sanger sequencing. Based on the patient's clinical data, this novel mutation was classified as severe ß0. However, the patient was mildly anemic (hemoglobin, 89 g/L), which was inconsistent with typical ß0 carrier characteristics. On further evaluation, quantitative PCR indicated the presence of six α genes, while molecular analysis and pedigree analysis revealed the coexistence of αααanti3.7 and αααanti4.2. Therefore, we report a novel ß-thal variant combined with six α genes. We describe the patient's clinical phenotype and the process of molecular diagnosis. This case extends the spectrum of thalassemia variants.


Asunto(s)
Globinas beta , Talasemia beta , Alelos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Fenotipo , Globinas beta/genética , Talasemia beta/diagnóstico , Talasemia beta/genética
7.
FASEB J ; 33(1): 388-399, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944446

RESUMEN

Keratin intermediate filaments (IFs) are the major cytoskeletal component in epithelial cells. The dynamics of keratin IFs have been described to depend mostly on the actin cytoskeleton, but the rapid transport of fully polymerized keratin filaments has not been reported. In this work, we used a combination of photoconversion experiments and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing to study the role of microtubules and microtubule motors in keratin filament transport. We found that long keratin filaments, like other types of IFs, are transported along microtubules by kinesin-1. Our data revealed that keratin and vimentin are nonconventional kinesin-1 cargoes because their transport did not require kinesin light chains, which are a typical adapter for kinesin-dependent cargo transport. Furthermore, we found that the same domain of the kinesin heavy chain tail is involved in keratin and vimentin IF transport, strongly suggesting that multiple types of IFs move along microtubules using an identical mechanism.-Robert, A., Tian, P., Adam, S. A., Kittisopikul, M., Jaqaman, K., Goldman, R. D., Gelfand, V. I. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport.


Asunto(s)
Filamentos Intermedios/metabolismo , Queratina-18/metabolismo , Queratina-8/metabolismo , Cinesinas/fisiología , Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Cinesinas/antagonistas & inhibidores , Ratones , Ratones Noqueados , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA