RESUMEN
Rhabdomyosarcomas (RMSs) are highly malignant soft-tissue sarcomas. Head and neck RMSs often pose unique challenges to treatment because of their closeness to important structures. We here report a rare case of a 1-year-old boy with a 1-month history of right eye swelling and an eye mass. Biopsy of deep tumors in the maxillofacial region supports embryonal RMS. Postoperative positron emission computed tomography showed a 5.0 cm × 4.8 cm × 4.2 cm malignant tumor in the right maxillary region. In accordance with the international RMS study group guideline, the child was diagnosed with IIIa and TNM stage T2bN1M1 embryonal RMS. The child was treated with a combination of chemotherapy and 125I seed implantation radiotherapy and eventually achieved partial remission. This case report shows that 125I seed implantation is a safe and effective means of delivering radiotherapy to young children with head and neck RMSs. It may be an option for children with RMSs for whom surgery or external radiotherapy is unsuitable.
RESUMEN
Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.
Asunto(s)
Insecticidas , Tephritidae , Animales , Insecticidas/farmacología , Malatión/toxicidad , Tephritidae/genética , Resistencia a los Insecticidas/genéticaRESUMEN
Geogenic arsenic (As) contaminated groundwater has been widely accepted associating with dissolved organic matter (DOM) in aquifers, but the underlying enrichment mechanism at molecular-level from a thermodynamic perspective is poorly evidenced. To fill this gap, we contrasted the optical properties and molecular compositions of DOM coupled with hydrochemical and isotopic data in two floodplain aquifer systems with significant As variations along the middle reaches of Yangtze River. Optical properties of DOM indicate that groundwater As concentration is mainly associated with terrestrial humic-like components rather than protein-like components. Molecular signatures show that high As groundwater has lower H/C ratios, but greater DBE, AImod, and NOSC values. With the increase of groundwater As concentration, the relative abundance of CHON3 formulas gradually decreased while that of CHON2 and CHON1 increased, indicating the importance of N-containing organics in As mobility, which is also evidenced by nitrogen isotope and groundwater chemistry. Thermodynamic calculation demonstrated that organic matter with higher NOSC values preferentially favored the reductive dissolution of As-bearing Fe(III) (hydro)oxides minerals and thus promoted As mobility. These findings could provide new insights to decipher organic matter bioavailability in As mobilization from a thermodynamical perspective and are applicable to similar geogenic As-affected floodplain aquifer systems.
Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Compuestos Férricos/análisis , Arsénico/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Materia Orgánica Disuelta , Monitoreo del AmbienteRESUMEN
Yellow lasers are of great interest in biology, medicine and display technology. However, nonlinear emission of near-infrared lasers at yellow still presents particularly complex optical alignment to date. Here, to the best of our knowledge, we demonstrate the fabrication of a NaLa(WO4)2: Dy3+ glass-ceramic fiber (GCF) for the first time. More importantly, the emission band of the GCF, which is around 575 nm, has a wide full-width half maximum (FWHM) of 18~22 nm, which is remarkably larger than that of the Dy3+-doped YAG crystal (<7 nm). The precursor fiber (PF) was drawn using the molten core drawing (MCD) method. In particular, benefiting from the in situ nanocrystals fabricated in the amorphous fiber core after thermal treatment, the resultant glass-ceramic fiber exhibits a five-times enhancement of luminescence intensity around 575 nm, compared with the precursor fiber, while retaining its broadband emission. Overall, this work is anticipated to offer a high potential GCF with prominent bandwidth for the direct access of a tunable yellow laser.
RESUMEN
Arsenic (As) is a toxic metalloid that is a significant global pollutant of the environment and a persistent bioaccumulation carcinogen. Earthworms are frequently employed as sentinel organisms to investigate the bioavailability of As in contaminated soils. However, the process of As accumulation in earthworms and the mechanism of transformation of As species in their bodies are not well understood. The accumulation of As and variation of As species in the earthworms (Eisenia fetida) exposed to sodium arsenite (0, 20, and 80 mg kg-1 As) were investigated in this study. The total As concentration of earthworms in the three treatments at various sample times was dose-dependent on soil As content. After 56 days of exposure, the high concentration treatment had the highest total As content (772 ± 21 mg kg-1) in earthworms, followed by the low concentration treatment (579 ± 42 mg kg-1) and control (31 ± 1 mg kg-1). During 56 days, the proportion of trivalent As in earthworms increased from 70% to more than 90%, while pentavalent As decreased by 11-18%. On day 28, the sum of the four organic As species reached a maximum (<1%). Changes in soil As species and an increase in bioavailable As cause earthworms to accumulate more As. The total As in soil after 56 days of exposure was 9.51 ± 0.50, 25.6 ± 0.60, and 82.8 ± 0.28 mg kg-1, which was not significantly different from the total As in soil before the experiment. These findings are useful in assessing the risk of earthworm exposure to sodium arsenite in the soil.