Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 133: 109709, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39053860

RESUMEN

Gut microbiota dysbiosis and gut barrier disruption are key events associated with high-fat diet (HFD)-induced systemic metabolic disorders. Gymnemic acid (GA) has been reported to have an important role in alleviating HFD-induced disorders of glycolipid metabolism, but its regulatory role in HFD-induced disorders of the gut microbiota and gut barrier function has not been elucidated. Here we showed that GA intervention in HFD-induced hamsters increased the relative abundance of short-chain fatty acid (SCFA)-producing microbes including Lactobacillus (P<.05) and Lachnoclostridium (P<.01) in the gut, and reduced the relative abundance of lipopolysaccharide (LPS)-producing microbes including Enterococcus (P<.05) and Bacteroides (P<.05), subsequently improving HFD-induced intestinal barrier dysfunction and systemic inflammation. Specifically, GA intervention reduced mRNA expression of inflammatory cytokines, including IL-1ß, IL-6, and TNF-α (P<.01), increased mRNA expression of antioxidant-related genes, including Nfe2l2, Ho-1, and Nqo1 (P<.01), and increased mRNA expression of intestinal tight junction proteins, including Occludin and Claudin-1 (P<.01), thereby improving gut barrier function of HFD hamsters. This ameliorative effect of GA on the gut of HFD hamsters may further promote lipid metabolic balance in liver and adipose tissue by regulating the Toll-like receptor 4 (TLR4)-nuclear factor-κB (NF-κB) signaling pathway. Taken together, these results systematically revealed the important role of GA in regulating HFD-induced gut microbiota disturbance and gut barrier function impairment, providing a potential clinical theoretical basis for targeted treatment of HFD-induced microbiota dysbiosis.


Asunto(s)
Dieta Alta en Grasa , Disbiosis , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Triterpenos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Disbiosis/microbiología , Triterpenos/farmacología , Mesocricetus , Saponinas/farmacología , Cricetinae , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo
2.
Cell Biochem Funct ; 42(5): e4087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953407

RESUMEN

ß-Nicotinamide mononucleotide (NMN) is a biologically active nucleotide that regulates the physiological metabolism of the body by rapidly increasing nicotinamide adenine dinucleotide (NAD+). To determine the safety and biological activity of NMN resources, we constructed a recombinant strain of P. pastoris that heterologously expresses nicotinamide-phosphate ribosyltransferase (NAMPT), and subsequently catalyzed and purified the expressed product to obtain NMN. Consequently, this study established a high-fat diet (HFD) obese model to investigate the lipid-lowering activity of NMN. The findings showed that NMN supplementation directly increased the NAD+ levels, and reduced HFD-induced liver injury and lipid deposition. NMN treatment significantly decreased total cholesterol (TC) and triglyceride (TG) in serum and liver, as well as alanine aminotransferase (ALT) and insulin levels in serum (p < .05 or p < .01). In conclusion, this study combined synthetic biology with nutritional evaluation to confirm that P. pastoris-generated NMN modulated lipid metabolism in HFD mice, offering a theoretical framework and evidence for the application of microbially created NMN.


Asunto(s)
Dieta Alta en Grasa , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Mononucleótido de Nicotinamida , Animales , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Hígado/metabolismo , Masculino , Nicotinamida Fosforribosiltransferasa/metabolismo
3.
Cell Commun Signal ; 22(1): 285, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790068

RESUMEN

Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.


Asunto(s)
Envejecimiento , Animales , Humanos , Envejecimiento/genética , Envejecimiento/patología , Restricción Calórica , Daño del ADN , Longevidad , Mitocondrias/metabolismo , Terapéutica
4.
Biomed Pharmacother ; 175: 116682, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703507

RESUMEN

The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. ß-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.


Asunto(s)
Dieta Alta en Grasa , Retículo Endoplásmico , Hígado Graso , Resistencia a la Insulina , Hígado , Ratones Endogámicos C57BL , Mononucleótido de Nicotinamida , Animales , Resistencia a la Insulina/fisiología , Dieta Alta en Grasa/efectos adversos , Retículo Endoplásmico/metabolismo , Masculino , Ratones , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Mononucleótido de Nicotinamida/farmacología , Hígado Graso/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Transducción de Señal
5.
Antioxidants (Basel) ; 13(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38671842

RESUMEN

Under normal physiological conditions, reactive oxygen species (ROS) are produced through redox reactions as byproducts of respiratory and metabolic activities. However, due to various endogenous and exogenous factors, the body may produce excessive ROS, which leads to oxidative stress (OS). Numerous studies have shown that OS causes a variety of pathological changes in cells, including mitochondrial dysfunction, DNA damage, telomere shortening, lipid peroxidation, and protein oxidative modification, all of which can trigger apoptosis and senescence. OS also induces a variety of aging-related diseases, such as retinal disease, neurodegenerative disease, osteoarthritis, cardiovascular diseases, cancer, ovarian disease, and prostate disease. In this review, we aim to introduce the multiple internal and external triggers that mediate ROS levels in rodents and humans as well as the relationship between OS, aging, and aging-related diseases. Finally, we present a statistical analysis of effective antioxidant measures currently being developed and applied in the field of aging research.

6.
Chem Res Toxicol ; 32(1): 38-48, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30520628

RESUMEN

Diosbulbin B (DBB) and 8-epidiosbulbin E acetate (EEA), belonging to furan-containing diterpenoid lactones, are the primary components of Dioscorea bulbifera L. (DB), a traditional Chinese medicine herb. Our earlier studies indicated that consumption of DBB or EEA induced acute hepatotoxicities. Both DBB and EEA were bioactivated by P450 3A4 to generate the corresponding cis-enedial reactive metabolites which are associated with the hepatotoxicities. It has been proposed that the electrophilic intermediates attack cellular nucleophiles such as protein or DNA, thought to be a mechanism of triggering toxicities. The purposes of our present study were to define the interaction of the electrophilic reactive metabolites originating from DBB and EEA with 2'-deoxyguanosine (dGuo), 2'-deoxycytidine (dCyd), and 2'-deoxyadenosine (dAdo) and to characterize DNA adducts arising from the reactive metabolites of DBB and EEA. The reactive metabolites of DBB and EEA were found to covalently bind to the exocyclic and endocyclic nitrogens of dCyd, dGuo, and dAdo to generate oxadiazabicyclo[3.3.0]octaimine adducts. The reactive metabolites of DBB and EEA also attacked dGuo, dAdo, and dCyd of calf thymus DNA. The DNA adducts possibly contribute to the toxicologies of DBB and EEA.


Asunto(s)
Aductos de ADN/metabolismo , ADN/metabolismo , Diterpenos/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Activación Metabólica , Animales , Bovinos , ADN/síntesis química , ADN/química , Aductos de ADN/síntesis química , Aductos de ADN/química , Dioscorea/química , Diterpenos/síntesis química , Diterpenos/química , Medicamentos Herbarios Chinos/síntesis química , Medicamentos Herbarios Chinos/química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Medicina Tradicional China , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...