Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(7): 377, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850342

RESUMEN

A novel molecularly imprinted ratiometric fluorescent sensor CQDs@MIP/FITC@SiO2 for the detection of p-nitroaniline (p-NA) was constructed through the mixture of CQDs@MIP and FITC@SiO2 in the ratio of 1:1 (VCQDs@MIP:VFITC@SiO2). The polymers of CQDs@MIP and FITC@SiO2 were prepared by sol-gel method and reversed-phase microemulsion method, respectively. CQDs@MIP was used as the auxiliary response signal and FITC@SiO2 was used as the reference enhancement signal. The signal was measured at excitation/emission wavelengths of 365/438, 512 nm. The sensor showed good linearity in the concentration range 0.14-40.00 µM (R2 = 0.998) with a detection limit of 0.042 µM for p-NA. The color change of "blue-cyan-green" could be observed by the naked eye under 365 nm UV light, thus realizing the visual detection of p-NA. The sensor presented comparable results compared with high-performance liquid chromatography (HPLC) method for the detection of p-NA in hair dye paste and aqueous samples with recoveries of 96.8-103.7% and 95.8-104.4%, respectively. It was demonstrated that the constructed sensor possesses the advantages of simplicity, excellent selectivity, superior sensitivity, and outstanding stability.

2.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604056

RESUMEN

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Asunto(s)
Brassica , Dimetoato , Límite de Detección , Polímeros Impresos Molecularmente , Dimetoato/análisis , Brassica/química , Polímeros Impresos Molecularmente/química , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Impresión Molecular/métodos , Nanopartículas de Magnetita/química , Extracción en Fase Sólida/métodos , Contaminación de Alimentos/análisis
3.
Mikrochim Acta ; 191(5): 249, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587558

RESUMEN

17ß-Estradiol (E2) is the typical endocrine disruptor of steroidal estrogens and is widely used in animal husbandry and dairy processing. In the environment, even lower concentrations of E2 can cause endocrine dysfunction in organisms. Herein, we have developed a novel molecularly imprinted ratiometric fluorescent sensor based on SiO2-coated CdTe quantum dots (CdTe@SiO2) and 7-hydroxycoumarin with a post-imprint mixing strategy. The sensor selectively detected E2 in aqueous environments due to its two fluorescent signals with a self-correction function. The sensor has been successfully used for spiking a wide range of real water and milk samples. The results showed that the sensor exhibited good linearity over the concentration range 0.011-50 µg/L, obtaining satisfactory recoveries of 92.4-110.6% with precisions (RSD) < 2.5%. Moreover, this sensor obtained an ultra-low detection limit of 3.3 ng/L and a higher imprinting factor of 13.66. By using estriol (E3), as a supporting model, it was confirmed that a simple and economical ratiometric fluorescent construction strategy was provided for other hydrophobic substances.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Animales , Leche , Fluorescencia , Dióxido de Silicio , Telurio , Estradiol , Colorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...