Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 671: 779-789, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38833910

RESUMEN

The modulation of microstructures in conjugated polymers represents a viable strategy for enhancing photocatalytic efficiency, albeit hampered by complex processing techniques. Here, we present an uncomplicated, template-free method to synthesize polymeric photocatalysts, namely BCN(x)@PPy, featuring a hollow nanotube-nanocluster core-shell superstructure. This configuration is realized through intramolecular covalent crosslinking and synergistic intermolecular donor-acceptor (D-A) interactions between phenylene pyrene (PPy, D) nanotubes and poly([1,1'-biphenyl]-3-carbonitrile) (PBCN, A) nanoclusters. Interestingly, the optimized BCN2@PPy composite demonstrates remarkably enhanced performance for photocatalytic hydrogen evolution, with an efficiency of 14.7-fold higher than that of unmodified PPy nanotubes. Experimental and density functional theory calculations revealed that BCN(x)@PPy composites are conducive to shortening photogenerated exciton migration, facilitating charge separation and transfer, reducing nanoclusters aggregation or re-stacking, and providing sufficient catalytically active sites, all contributing to the heightened efficiency in photocatalysis. These insights underscore the potential for precise molecular adjustments in conjugated polymers, advancing artificial photosynthesis.

2.
J Colloid Interface Sci ; 661: 333-344, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301470

RESUMEN

Developing visible to near-infrared light-absorbing conjugated polymer photocatalysts is crucial for enhancing solar energy utilization efficiency, as most conjugated organic polymers only absorb light in the visible range. In this work, we firstly developed a novel thiophene S,S-dioxide (TDO) monomer with the stronger electron-withdrawing character, and then prepared a series of donor-acceptor1-donor-acceptor2-type (D-A1-D-A2-type) conjugated terpolymers (THTDB-1-THTDB-5) by statistically adjusting the molar ratio of two sulfone-based acceptor monomers, dibenzothiophene-S,S-dioxide (BTDO, A1) and TDO (A2). These terpolymers demonstrate a gradually expanding absorption range from visible light to the second near-infrared (Vis-to-NIR-II) region with the gradual increase of the TDO contents in the polymer skeleton, showcasing excellent absorption properties and efficient light-capturing capabilities. The optimized D-A1-D-A2 polymer photocatalyst THTDB-4 exhibits a high hydrogen evolution rate of 21.27 mmol g-1 h-1 under visible light without any co-catalyst. The dual-sulfone-acceptor engineering offers a viable approach for developing efficient the longer Vis-to-NIR-II light-harvesting polymer photocatalysts.

3.
Plant Cell Environ ; 47(5): 1797-1812, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314665

RESUMEN

As the most abundant form of methylation modification in messenger RNA (mRNA), the distribution of N6-methyladenosine (m6A) has been preliminarily revealed in herbaceous plants under salt stress, but its function and mechanism in woody plants were still unknown. Here, we showed that global m6A levels increased during poplar response to salt stress. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that m6A significantly enriched in the coding sequence region and 3'-untranslated regions in poplar, by recognising the conserved motifs, AGACU, GGACA and UGUAG. A large number of differential m6A transcripts have been identified, and some have been proved involving in salt response and plant growth and development. Further combined analysis of MeRIP-seq and RNA-seq revealed that the m6A hypermethylated and enrich in the CDS region preferred to positively regulate expression abundance. Writer inhibitor, 3-deazaneplanocin A treatment increased the sensitivity of poplar to salt stress by reducing mRNA stability to regulate the expression of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Furthermore, we verified that the methyltransferase PagFIP37 plays a positively role in the response of poplar to salt stress, overexpressed lines have stronger salt tolerance, while RNAi lines were more sensitive to salt, which relied on regulating mRNA stability in an m6A manner of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Collectively, these results revealed the regulatory role of m6A methylation in poplar response to salt stress, and revealed the importance and mechanism of m6A methylation in the response of woody plants to salt stress for the first time.


Asunto(s)
Adenosina/análogos & derivados , Populus , Metilación de ARN , Estrés Salino/genética , Metiltransferasas/genética , Populus/genética , ARN Mensajero/genética
4.
Front Plant Sci ; 13: 994154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204058

RESUMEN

The AlkB homologs (ALKBH) gene family regulates N6-methyladenosine (m6A) RNA methylation and is involved in plant growth and the abiotic stress response. Poplar is an important model plant for studying perennial woody plants. Poplars typically have a long juvenile period of 7-10 years, requiring long periods of time for studies of flowering or mature wood properties. Consequently, functional studies of the ALKBH genes in Populus species have been limited. Based on AtALKBHs sequence similarity with Arabidopsis thaliana, 23 PagALKBHs were identified in the genome of the poplar 84K hybrid genotype (P. alba × P. tremula var. glandulosa), and gene structures and conserved domains were confirmed between homologs. The PagALKBH proteins were classified into six groups based on conserved sequence compared with human, Arabidopsis, maize, rice, wheat, tomato, barley, and grape. All homologs of PagALKBHs were tissue-specific; most were highly expressed in leaves. ALKBH9B and ALKBH10B are m6A demethylases and overexpression of their homologs PagALKBH9B and PagALKBH10B reduced m6A RNA methylation in transgenic lines. The number of adventitious roots and the biomass accumulation of transgenic lines decreased compared with WT. Therefore, PagALKBH9B and PagALKBH10B mediate m6A RNA demethylation and play a regulatory role in poplar growth and development. Overexpression of PagALKBH9B and PagALKBH10B can reduce the accumulation of H2O2 and oxidative damage by increasing the activities of SOD, POD, and CAT, and enhancing protection for Chl a/b, thereby increasing the salt tolerance of transgenic lines. However, overexpression lines were more sensitive to drought stress due to reduced proline content. This research revealed comprehensive information about the PagALKBH gene family and their roles in growth and development and responsing to salt stress of poplar.

5.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887208

RESUMEN

Poplar is not only an important woody plant, but also a model species for molecular plant studies. We identified PagGRF11 (pAxG07Gg0005700), a homolog of the Arabidopsis AtGRF1 (AT4G37740) and AtGRF2 (AT2G22840) gene. We transformed the poplar clone "84K" with PagGRF11, and the transgenic overexpressed plants (PagGRF11-OE) showed plant height reduction (dwarfing), stem diameter increase, internode shortening, and larger leaf area. The Arabidopsis overexpression line grf-oe (Overexpression of PagGRF11 in Arabidopsis), mutant line atgrf (a loss-of-function mutant of the AtGRF1 gene of Arabidopsis thaliana), and mutant trans-complementary line atgrf+oe (overexpression of PagGRF11 in mutant plants (atgrf)) also showed different leaf size phenotypes. Further, tissue sections revealed that increased xylem production was the main cause of stem thickening. Transcriptome differential expression analysis of PagGRF11 overexpressed and control plants showed that PagGRF11 promoted CCCH39(C3H39) expression. The expression profile of CCCH39 in different tissues showed that it was highly expressed in xylem. Yeast single hybrid and instantaneous double luciferase assay results showed that PagGRF11 directly transcribed and activated CCCH39 expression through interaction with cis-acting element GARE (TCTGTTG), thus promoting xylem development. This is the first finding that GRF positively regulates xylem development through CCCH39 expression activation and further suggests that PagGRF11 is a potential target for increasing wood yield.


Asunto(s)
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Populus/metabolismo , Madera/genética , Xilema/metabolismo
6.
Front Plant Sci ; 13: 854716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463434

RESUMEN

Red-heart Chinese fir (Cunninghamia lanceolata) has the advantages of high density and attractive color, making it popular in the market. To date, most studies about stems of woody plants have only been reported at the cytological level because of few living cells. In this study, the xylem was successfully partitioned into three effective sampling areas: sapwood, transition zone, and heartwood. Secondary metabolites, cell survival, and differentially expressed genes in the three sampling areas were, respectively, investigated. First, we identified the phenylpropanoid and flavonoid pathways closely related to color. Based on the chemical structure of secondary metabolites in pathways, two notable directions had been found. Luteolin's glycosylation products might be the key substances that regulated the color of heartwood in red-heart Chinese fir because of the 1,000-fold difference between red-heart and white-heart. We also found pinocembrin and pinobanksin in Chinese fir, which were rarely reported before. At the cytological level, we believed that the transition zone of red-heart Chinese fir was a critical region for color production because of the fewer living ray parenchyma cells. In addition, transcriptome and quantitative reverse transcription PCR (qRT-PCR) proved that genes regulating the entire phenylpropanoid pathway, upstream of the flavonoid pathway, and some glycosyltransferases were significantly upregulated in the transition zone of red-heart and then colored the heartwood by increasing metabolites. This is the first report on the color-related secondary metabolites regulated by differential genes in red-heart Chinese fir. This study will broaden our knowledge on the effects of metabolites on coloring woody plant xylems.

7.
Micromachines (Basel) ; 10(8)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374816

RESUMEN

In this paper, a liquid refractive index (LRI) measurement system based on an electrowetting lens was proposed. The system is composed of a light source, a collimating lens, a liquid measurement chamber (LMC), an electrowetting lens and an image sensor, which is integrated into a cylindrical cavity. The refractive index of the LMC changes with the addition of the measured liquid, and the incident light cannot be focused on the image plane. By adjusting the driving voltage of the electrowetting lens, the curvature of the liquid-liquid interface changes to focus the incident light onto the image plane. The refractive index of the liquid could be measured according to the voltage value. The proposed LRI measurement system has no mechanical moving parts, and the imaging surface remains stationary, which can make the measurement simply and correctly. The experiments show that the refractive index measurement range of the system can be turned from ~1.3300 to ~1.4040, and the measurement accuracy is 10-4. The system can be used to measure the optical properties of liquids and has broad potential applications in chemical reagent detection and pharmaceutical testing.

8.
Genomics ; 111(4): 700-709, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29660475

RESUMEN

Branching in woody plants affects their ecological benefits and impacts wood formation. To obtain genome-wide insights into the transcriptome changes and regulatory mechanisms associated with branching, we performed high-throughput RNA sequencing to characterize cDNA libraries generated from active buds of Populus deltoides CL. 'zhonglin2025' (BC) and Populus × zhaiguanheibaiyang (NC). NC has more branches than BC and rapid growth. We obtained a total of 198.2 million high-quality clean reads from the NC and BC libraries. We detected 3543 differentially expressed genes (DEGs) between the NC and BC libraries; 1418 were down-regulated and 2125 were up-regulated. Gene ontology functional classification of the DEGs indicated that they included 89 genes that encoded proteins related to hormone biosynthesis, 364 genes related to hormone signaling transduction, and 104 related to the auxin efflux transmembrane transporter. We validated the expression profiles of 16° by real-time quantitative PCR and found that their expression patterns were similar to those obtained from the high-throughput RNA sequencing data. We also measured the hormone content in young buds of BC and NC by high-pressure liquid chromatography. In this study, we identified global hormone regulatory patterns and differences in gene expression between NC and BC, and constructed a hormone regulatory network to explain branching in Populus buds. In addition, candidate genes that may be useful for molecular breeding of particular plant types were identified. Our results will provide a starting point for future investigations into the molecular mechanisms of branching in Populus.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Populus/genética , Transcriptoma , Flores/genética , Flores/crecimiento & desarrollo , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Physiol Biochem ; 118: 571-578, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28787659

RESUMEN

Plant architecture, as a basic element influenced by genetic and environmental factors, has an important effect on grain yield via light transmission in agroforestry systems. The molecular mechanism underlying control of branch angle, an important aspect of tree architecture, is not well understood in poplars. Here, we cloned two genes from Populus × zhaiguanheibaiyang (a narrow-crown poplar), designated PzTAC and PzLAZY, which were predicted to be members of the ITG gene family through sequence homology. Transcript levels of the homologous genes were estimated by reverse transcriptase quantitative PCR (RT-qPCR) in different organs of P. × zhaiguanheibaiyang and P. Deltoides 'Zhonglin2025' (a broad-crown poplar). TAC expression was mainly confined to the leaves and annual shoots, whereas LAZY was mainly expressed in the annual shoots and axillary buds. Beside, we detected the promoter expression patterns derived from the PzTAC and PzLAZY genes using the ß-glucuronidase (GUS) reporter gene in transgenic Populus × euramericana 'Neva'. GUS activity driven by the PzTAC and PzLAZY promoters was detected in mature leaves, leaf axils and vascular tissues of roots. The PzTAC promoter was mainly active in leaf veins, whereas the PzLAZY promoter was mainly active in mesophyll cells and root tips. The average branch angle in transgenic 35S::PzTAC plants was larger than that of transgenic 35S::PzLAZY plants. The results provide strong evidence that the two genes affect the vascular tissues of transgenic plants to modify branch angles.


Asunto(s)
Quimera/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Quimera/genética , Brotes de la Planta/genética , Plantas Modificadas Genéticamente/genética , Populus/genética
10.
Light Sci Appl ; 6(8): e17032, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30167282

RESUMEN

We demonstrate an all-optical strategy for realizing spherical three-dimensional (3D) super-resolution (∼λ3/22) spot arrays of pure longitudinal magnetization by exploiting a 4π optical microscopic setup with two high numerical aperture (NA) objective lenses, which focus and interfere two modulated vectorial beams. Multiple phase filters (MPFs) are designed via an analytical approach derived from the vectorial Debye diffraction theory to modulate the two circularly polarized beams. The system is tailored to constructively interfere the longitudinal magnetization components, while simultaneously destructively interfering the azimuthal ones. As a result, the magnetization field is not only purely longitudinal but also super-resolved in all three dimensions. Furthermore, the MPFs can be designed analytically to control the number and locations of the super-resolved magnetization spots to produce both uniform and nonuniform arrays in a 3D volume. Thus, an all-optical control of all the properties of light-induced magnetization spot arrays has been demonstrated for the first time. These results open up broad applications in magnetic-optical devices such as confocal and multifocal magnetic resonance microscopy, 3D ultrahigh-density magneto-optic memory, and light-induced magneto-lithography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...