Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Prolif ; 55(1): e13157, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34821414

RESUMEN

OBJECTIVES: YTHDF1 is known as a m6 A reader protein, and many researches of YTHDF1 focused on the regulation of mRNA translation efficiency. However, YTHDF1 is also related to RNA degradation, but how YTHDF1 regulates mRNA degradation is indefinite. Liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in mammal cells, and there are few reports focused on the correlation of RNA degradation with LLPS. In this research, we focused on the mechanism of YTHDF1 degraded mRNA through LLPS. MATERIALS AND METHODS: The CRISPR/Cas9 knock out system was used to establish the YTHDF1 knock out (YTHDF1-KO) cell lines (HEK293 and HeLa) and METTL14 knock out (METTL14-KO) cell line (HEK293). 4SU-TT-seq was used to check the half-life changes of mRNAs. Actinomycin D and qPCR were used to test the half-life changes of individual mRNA. RNA was stained with SYTO RNA-select dye in wild type (WT) and YTHDF1-KO HeLa cell lines. Co-localization of YTHDF1 and AGO2 was identified by immunofluorescence. The interaction domain of YTHDF1 and AGO2 was identified by western blot. Phase separation of YTHDF1 was performed in vitro and in vivo. Fluorescence recovery after photobleaching (FRAP) was performed on droplets as an assessment of their liquidity. RESULTS: In this research, we found that deletion of YTHDF1 led to massive RNA patches deposited in cytoplasm. The results of 4SU-TT-seq showed that deletion of YTHDF1 would prolong the half-life of mRNAs. Immunofluorescence data showed that YTHDF1 and AGO2 could co-localize in P-body, and Co-IP results showed that YTHDF1 could interact with AGO2 through YT521-B homology (YTH) domain. We confirmed that YTHDF1 could undergo phase separation in vitro and in vivo, and compared with AGO2, YTHDF1 was more important in P-body formation. The FRAP results showed that liquid AGO2 droplets would convert to gel/solid when YTHDF1 was deleted. As AGO2 plays important roles in miRISCs, we also found that miRNA-mediate mRNA degradation is related to YTHDF1. CONCLUSIONS: YTHDF1 recruits AGO2 through the YTH domain. YTHDF1 degrades targeting mRNAs by promoting P-body formation through LLPS. The deletion of YTHDF1 causes the P-body to change from liquid droplets to gel/solid droplets, and form AGO2/RNA patches, resulting in a degradation delay of mRNAs. These findings reveal a previously unrecognized crosstalk between YTHDF1 and AGO2, raising a new sight of mRNA post-transcriptional regulation by YTHDF1.


Asunto(s)
Proteínas Argonautas/metabolismo , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencia de Bases , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN/química
2.
Circ Res ; 127(4): 502-518, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32366200

RESUMEN

RATIONALE: The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway are pivotal to proteostasis. Targeting these pathways is emerging as an attractive strategy for treating cancer. However, a significant proportion of patients who receive a proteasome inhibitor-containing regime show cardiotoxicity. Moreover, UPS and autophagic-lysosomal pathway defects are implicated in cardiac pathogenesis. Hence, a better understanding of the cross-talk between the 2 catabolic pathways will help advance cardiac pathophysiology and medicine. OBJECTIVE: Systemic proteasome inhibition (PSMI) was shown to increase p62/SQSTM1 expression and induce myocardial macroautophagy. Here we investigate how proteasome malfunction activates cardiac autophagic-lysosomal pathway. METHODS AND RESULTS: Myocardial macroautophagy, TFEB (transcription factor EB) expression and activity, and p62 expression were markedly increased in mice with either cardiomyocyte-restricted ablation of Psmc1 (an essential proteasome subunit gene) or pharmacological PSMI. In cultured cardiomyocytes, PSMI-induced increases in TFEB activation and p62 expression were blunted by pharmacological and genetic calcineurin inhibition and by siRNA-mediated Molcn1 silencing. PSMI induced remarkable increases in myocardial autophagic flux in wild type mice but not p62 null (p62-KO) mice. Bortezomib-induced left ventricular wall thickening and diastolic malfunction was exacerbated by p62 deficiency. In cultured cardiomyocytes from wild type mice but not p62-KO mice, PSMI induced increases in LC3-II flux and the lysosomal removal of ubiquitinated proteins. Myocardial TFEB activation by PSMI as reflected by TFEB nuclear localization and target gene expression was strikingly less in p62-KO mice compared with wild type mice. CONCLUSIONS: (1) The activation of cardiac macroautophagy by proteasomal malfunction is mediated by the Mocln1-calcineurin-TFEB-p62 pathway; (2) p62 unexpectedly exerts a feed-forward effect on TFEB activation by proteasome malfunction; and (3) targeting the Mcoln1 (mucolipin1)-calcineurin-TFEB-p62 pathway may provide new means to intervene cardiac autophagic-lysosomal pathway activation during proteasome malfunction.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Calcineurina/metabolismo , Macroautofagia/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Antineoplásicos/farmacología , Bortezomib/farmacología , Calcineurina/genética , Inhibidores de la Calcineurina , Hipertrofia Ventricular Izquierda/inducido químicamente , Lisosomas/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Inhibidores de Proteasoma , Proteostasis , ARN Interferente Pequeño , Ratas , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Ubiquitina/metabolismo , Regulación hacia Arriba
3.
PLoS One ; 9(6): e100715, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959866

RESUMEN

Intracellular protein degradation is primarily performed by the ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP). The interplay between these two pathways has been rarely examined in intact animals and the mechanism underlying the interplay remains unclear. Hence, we sought to test in vivo and in vitro the impact of inhibition of the ALP on UPS proteolytic performance in cardiomyocytes and to explore the underlying mechanism. Transgenic mice ubiquitously expressing a surrogate UPS substrate (GFPdgn) were treated with bafilomycin-A1 (BFA) to inhibit the ALP. Myocardial and renal GFPdgn protein levels but not mRNA levels were increased at 24 hours but not 3 hours after the first injection of BFA. Myocardial protein abundance of key proteasome subunits and the activities of proteasomal peptidases were not discernibly altered by the treatment. In cultured neonatal rat ventricular myocytes (NRVMs), the surrogate UPS substrate GFPu and a control red fluorescence protein (RFP) were co-expressed to probe UPS performance. At 12 hours or 24 hours after ALP inhibition by 3-methyladenine (3-MA) or BFA, GFPu/RFP protein ratios and the protein half-life of GFPu were significantly increased, which is accompanied by increases in p62 proteins. Similar findings were obtained when ALP was inhibited genetically via silencing Atg7 or Rab7. ALP inhibition-induced increases in GFPu and p62 are co-localized in NRVMs. siRNA-mediated p62 knockdown prevented ALP inhibition from inducing GFPu accumulation in NRVMs. We conclude that in a p62-dependent fashion, ALP inhibition impairs cardiac UPS proteolytic performance in cardiomyocytes in vitro and in vivo.


Asunto(s)
Autofagia , Proteínas de Choque Térmico/metabolismo , Lisosomas/metabolismo , Miocitos Cardíacos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Ácidos Borónicos/farmacología , Bortezomib , Proteínas de Choque Térmico/genética , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Proteolisis , Pirazinas/farmacología , Ratas , Proteína Sequestosoma-1
4.
Circ Res ; 111(5): 532-42, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22740087

RESUMEN

RATIONALE: Both cardiomyocyte-restricted proteasome functional enhancement and pharmacological proteasome inhibition (PSMI) were shown to attenuate myocardial ischemia/reperfusion (I/R) injury. The role of cardiac proteasome dysfunction during I/R and the perspective to diminish I/R injury by manipulating proteasome function remain unclear. OBJECTIVES: We sought to determine proteasome adequacy in I/R hearts, create a mouse model of cardiomyocyte-restricted PSMI (CR-PSMI), and test CR-PSMI impact on I/R injury. METHODS AND RESULTS: Myocardial I/R were modeled by ligation (30 minutes) and subsequent release of the left anterior descending artery in mice overexpressing GFPdgn, a validated surrogate proteasome substrate. At 24 hours of reperfusion, myocardial proteasome activities were significantly lower whereas total ubiquitin conjugates and GFPdgn protein levels were markedly higher in all regions of the I/R hearts than the sham controls, indicative of proteasome functional insufficiency. CR-PSMI in intact mice was achieved by transgenic (tg) overexpression of a peptidase-disabled mouse ß5 subunit (T60A-ß5) driven by an attenuated mouse mhc6 promoter. Overexpressed T60A-ß5 can replace endogenous ß5 and inhibits proteasome chymotrypsin-like activities in the heart. Mice with moderate CR-PSMI showed no abnormalities at the baseline but displayed markedly more pronounced structural and functional damage during I/R, compared with non-tg littermates. The exacerbation of I/R injury by moderate CR-PSMI was associated with significant increases in the protein level of PTEN and protein kinase Cδ (PKCδ), decreased Akt activation, and reduced PKCε. CONCLUSIONS: Myocardial I/R causes proteasome functional insufficiency in cardiomyocytes and moderate CR-PSMI augments PTEN and PKCδ, suppresses Akt and PKCε, increases cardiomyocyte apoptosis, and aggravates I/R injury in mice.


Asunto(s)
Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos , Ratones Transgénicos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
Am J Cardiovasc Dis ; 1(3): 214-26, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22081794

RESUMEN

Protein quality control (PQC) senses and repairs misfolded/unfolded proteins and, if the repair fails, degrades the terminally misfolded polypeptides through an intricate collaboration between molecular chaperones and targeted proteolysis. Proteolysis of damaged proteins is performed primarily by the ubiquitin-proteasome system (UPS). Macroautophagy (commonly known as autophagy) may also play a role in PQC-associated proteolysis, especially when UPS function becomes inadequate. The development of a range of heart diseases, including bona fide cardiac proteinopathies and various forms of cardiac dysfunction has been linked to proteasome functional insufficiency (PFI). Both PFI and activation of autophagy have been observed in the heart of well-established mouse models of cardiac proteinopathy. A causal relationship between PFI and autophagic activation was suggested by a study using cultured cardiomyocytes but has not been established in the heart of intact animals. Taking advantage of an autophagy reporter, we demonstrated here that pharmacologically induced proteasome inhibition is sufficient to activate autophagy in cardiomyocytes in both intact animals and cell cultures, unveiling a potential cross-talk between the two major degradation pathways in cardiac PQC.

6.
J Am Coll Cardiol ; 56(17): 1418-26, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20947000

RESUMEN

OBJECTIVES: The goal of this pre-clinical study was to assess the therapeutic efficacy of doxycycline (Doxy) for desmin-related cardiomyopathy (DRC) and to elucidate the potential mechanisms involved. BACKGROUND: DRC, exemplifying cardiac proteinopathy, is characterized by intrasarcoplasmic protein aggregation and cardiac insufficiency. No effective treatment for DRC is available presently. Doxy was shown to attenuate aberrant intranuclear aggregation and toxicity of misfolded proteins in noncardiac cells and animal models of other proteinopathies. METHODS: Mice and cultured neonatal rat cardiomyocytes with transgenic (TG) expression of a human DRC-linked missense mutation R120G of αB-crystallin (CryAB(R120G)) were used for testing the effect of Doxy. Doxy was administered via drinking water (6 mg/ml) initiated at 8 or 16 weeks of age. RESULTS: Doxy treatment initiated at 16 weeks of age significantly delayed the premature death of CryAB(R120G) TG mice, with a median lifespan of 30.4 weeks (placebo group, 25 weeks; p < 0.01). In another cohort of CryAB(R120G) TG mice, Doxy treatment initiated at 8 weeks of age significantly attenuated cardiac hypertrophy in 1 month. Further investigation revealed that Doxy significantly reduced the abundance of CryAB-positive microscopic aggregates, detergent-resistant CryAB oligomers, and total ubiquitinated proteins in CryAB(R120G) TG hearts. In cell culture, Doxy treatment dose-dependently suppressed the formation of both microscopic protein aggregates and detergent-resistant soluble CryAB(R120G) oligomers and reversed the up-regulation of p62 protein induced by adenovirus-mediated CryAB(R120G) expression. CONCLUSIONS: Doxy suppresses CryAB(R120G)-induced aberrant protein aggregation in cardiomyocytes and prolongs CryAB(R120G)-based DRC mouse survival.


Asunto(s)
Cardiomiopatías/metabolismo , Desmina/metabolismo , Doxiciclina/farmacología , Miocitos Cardíacos/metabolismo , Proteínas/metabolismo , Animales , Autofagia , Cardiomiopatías/mortalidad , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ratones , Ratones Transgénicos , Ratas , Tasa de Supervivencia
7.
Cardiovasc Res ; 88(3): 424-33, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20601385

RESUMEN

AIMS: Proteasome functional insufficiency (PFI) may play an important role in the progression of congestive heart failure but the underlying molecular mechanism is poorly understood. Calcineurin and nuclear factor of activated T-cells (NFAT) are degraded by the proteasome, and the calcineurin-NFAT pathway mediates cardiac remodelling. The present study examined the hypothesis that PFI activates the calcineurin-NFAT pathway and promotes maladaptive remodelling of the heart. METHODS AND RESULTS: Using a reporter gene assay, we found that pharmacological inhibition of 20S proteasomes stimulated NFAT transactivation in both mouse hearts and cultured adult mouse cardiomyocytes. Proteasome inhibition stimulated NFAT nuclear translocation in a calcineurin-dependent manner and led to a maladaptive cell shape change in cultured neonatal rat ventricular myocytes. Proteasome inhibition facilitated left ventricular dilatation and functional decompensation and increased fatality in mice with aortic constriction while causing cardiac hypertrophy in the sham surgery group. It was further revealed that both calcineurin protein levels and NFAT transactivation were markedly increased in the mouse hearts with desmin-related cardiomyopathy and severe PFI. Expression of an aggregation-prone mutant desmin also directly increased calcineurin protein levels in cultured cardiomyocytes. CONCLUSIONS: The calcineurin-NFAT pathway in the heart can be activated by proteasome inhibition and is activated in the heart of a mouse model of desmin-related cardiomyopathy that is characterized by severe PFI. The interplay between PFI and the calcineurin-NFAT pathway may contribute to the pathological remodelling of cardiomyocytes characteristic of congestive heart failure.


Asunto(s)
Calcineurina/fisiología , Insuficiencia Cardíaca/fisiopatología , Miocitos Cardíacos/fisiología , Factores de Transcripción NFATC/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Animales , Ácidos Borónicos/farmacología , Bortezomib , Células Cultivadas , Desmina/genética , Insuficiencia Cardíaca/patología , Ratones , Ratones Transgénicos , Modelos Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Inhibidores de Proteasas/farmacología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma , Pirazinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA