Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Surg ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114908

RESUMEN

OBJECTIVE: To define the concept of surgeon-scientists and identify the root causes of their decline in number and impact. The secondary aim was to provide actionable remedies. BACKGROUND: Surgeons who conduct research in addition to patient care are referred to as «surgeon-scientists¼. While their value to society remains undisputed, their numbers and associated impact have been plunging. While reasons have been well identified along with proposals for countermeasures, their application have largely failed. METHODS: We conducted a systematic review covering all aspects of surgeon-scientists together with a global online survey among 141 young academic surgeons. Using gap analysis, we determined implementation gaps for proposed measures. Then, we developed a comprehensive rescue package. RESULTS: A surgeon-scientist must actively and continuously engage in both patient care and research. Competence in either field must be established through protected training and criteria of excellence, particularly reflecting contribution to innovation. The decline of surgeon-scientists has reached unprecedented magnitude. Leadership turning hospitals into «profit-factories¼ is one reason, a flawed selection process not exclusively based on excellence another. Most importantly, the appreciation for the academic mission has vanished. Along with fundamentally addressing these root causes, surgeon-scientists' path to excellence must be streamlined, and their continuous devotion for innovation cherished. CONCLUSION: The journey of the surgeon-scientist is at crossroads. As society, we either adapt and shift our priorities again towards innovation or capitulate to the greed for profit, permanently losing these invaluable professionals. Successful rescue packages must not only involve hospitals and universities but also the political sphere.

2.
Biomater Adv ; 163: 213933, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38972277

RESUMEN

Mechanical deformation of skin creates variations in fluid chemical potential, leading to local changes in hydrostatic and osmotic pressure, whose effects on mechanobiology remain poorly understood. To study these effects, we investigate the specific influences of hydrostatic and osmotic pressure on primary human dermal fibroblasts in three-dimensional hydrogel culture models. Cyclic hydrostatic pressure and hyperosmotic stress enhanced the percentage of cells expressing the proliferation marker Ki67 in both collagen and PEG-based hydrogels. Osmotic pressure also activated the p38 MAPK stress response pathway and increased the expression of the osmoresponsive genes PRSS35 and NFAT5. When cells were cultured in two-dimension (2D), no change in proliferation was observed with either hydrostatic or osmotic pressure. Furthermore, basal, and osmotic pressure-induced expression of osmoresponsive genes differed in 2D culture versus 3D hydrogels, highlighting the role of dimensionality in skin cell mechanotransduction and stressing the importance of 3D tissue-like models that better replicate in vivo conditions. Overall, these results indicate that fluid chemical potential changes affect dermal fibroblast mechanobiology, which has implications for skin function and for tissue regeneration strategies.


Asunto(s)
Fibroblastos , Hidrogeles , Mecanotransducción Celular , Fibroblastos/metabolismo , Hidrogeles/química , Humanos , Presión Osmótica , Proliferación Celular , Células Cultivadas , Piel/metabolismo , Piel/citología , Presión Hidrostática , Colágeno/metabolismo
3.
Small ; : e2401870, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031540

RESUMEN

Polymer-nanoparticle (PNP) hydrogels are a class of nanocomposite materials showing potential as injectable platforms for biomedical applications. Their design is limited by incomplete knowledge of how the binding motif impacts the viscoelastic properties of the material and is generally constrained to non-responsive supramolecular interactions. Expanding the scope of available interactions and advancing the understanding of how defined interactions influence network formation would accelerate PNP hydrogel design. To address this gap in the design of PNP hydrogels, the study designs and investigates a tunable platform based on beta-cyclodextrin (ßCD) host-guest cross-links between functionalized polymers and nanoparticles. A host-functionalized polymer (ßCD hyaluronic acid) and guest harboring block co-polymer (poly(ethylene glycol)-b-poly(lactic acid)) NPs are synthesized. The presence and accessibility for binding of the host and guest moieties are characterized via isothermal titration calorimetry. PNP hydrogels with varying concentrations of functionalized polymer and NPs reveal a limited window of concentrations for gelation. It is hypothesized that network formation is governed by the capacity of polymer chains to effectively bridge NPs, which is related to the host-guest ratios present in the system. Further, photo-responsive guests are incorporated to engineer photoreversible gelation of PNP hydrogels via exposure to specific wavelengths of light.

4.
J Histochem Cytochem ; 72(7): 419-433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054648

RESUMEN

Pathology repositories worldwide store millions of celloidin-processed human brain and temporal bone (TB) sections vital for studying central nervous system diseases and sensory organs. However, accessing these sections for modern molecular-pathological research, like immunohistochemistry, is hindered by the challenge of removing celloidin without damaging tissue. In this study, we explored the use of polyethylene glycols (PEGs), a class of non-hazardous, ethylene glycol oligomers, combined with an improved section mounting technique, to gently and effectively dissolve celloidin from sections archived for up to 40 years. Optimizing our protocol involved exploring celloidin dissolution kinetics in PEGs of varying molecular weights and terminations, as well as different temperatures. Low molecular weight PEGs, particularly PEG 200, were the most efficient celloidin solvent. Nuclear magnetic resonance (NMR) spectroscopy of celloidin-PEG 200 dissolution products revealed no chemical alterations, suggesting pure solvation without chemical modification. Because the solvation of celloidin in PEG was inhibited by proteins, we further developed a protein-free mounting protocol allowing complete celloidin removal in 30 to 60 minutes by immersing in PEG 200. In summary, our approach overcomes major methodological hurdles, rendering decades-old archival celloidin sections viable for immunohistochemical and other molecular biological techniques, while enhancing safety and workflow efficiency.


Asunto(s)
Encéfalo , Inmunohistoquímica , Polietilenglicoles , Humanos , Polietilenglicoles/química , Inmunohistoquímica/métodos , Encéfalo/metabolismo , Encéfalo/citología
5.
Chem Mater ; 36(14): 6674-6695, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39070669

RESUMEN

Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.

6.
Ann Surg ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077782

RESUMEN

OBJECTIVE: To assess the impact of Normothermic Machine Perfusion (NMP) on patients, medical teams, and costs by gathering global insights and exploring current limitations. BACKGROUND: NMP for ex-situ liver graft perfusion is gaining increasing attention for its capability to extend graft preservation. It has the potential to transform liver transplantation (LT) from an urgent to a pure elective procedure, which could revolutionize LT logistics, reduce burden on patients and healthcare providers, and decrease costs. METHODS: A 31-item survey was sent to international transplant directors to gather their NMP experiences and vision. Additionally, we performed a systematic review on cost-analysis in LT and assessed studies on cost-benefit in converting urgent-to-elective procedures. We compared the costs of available NMPs and conducted a sensitivity analysis on NMP's cost benefits. RESULTS: Of 120 transplant programs contacted, 64 (53%) responded, spanning North America (31%), Europe (42%), Asia (22%), and South America (5%). Sixty percent had adopted NMP, with larger centers (>100 transplants/year) in North America and Europe more likely to use it. Main NMP systems were OrganOx-metra (39%), XVIVO (36%), and TransMedics-OCS (15%). Despite NMP adoption, 41% of centers still perform >50% of LTs at nights/weekends. Centers recognized NMP's benefits, including improved work satisfaction and patient outcomes, but faced challenges like high costs and machine complexity. 16% would invest $100'000-500'000, 33% $50'000-100'000, 38% $10'000-50'000, and 14% <$10'000 in NMP. These results were strengthened by a cost analysis for NMP in emergency-to-elective LT transition. Accordingly, while liver perfusions with disposables up to $10'000 resulted in overall positive net balances, this effect was lost when disposables' cost amounted to >$40'000/organ. CONCLUSION: The adoption of NMP is hindered by high costs and operational complexity. Making LT elective through NMP could reduce costs and improve outcomes, but overcoming barriers requires national reimbursements and simplified, automated NMP systems for multi-day preservation.

7.
Adv Healthc Mater ; : e2400800, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808536

RESUMEN

A major challenge for the regeneration of chronic wounds is an underlying dysregulation of signaling molecules, including inflammatory cytokines and growth factors. To address this, it is proposed to use granular biomaterials composed of jammed microgels, to enable the rapid uptake and delivery of biomolecules, and provide a strategy to locally sequester and release biomolecules. Sequestration assays on model biomolecules of different sizes demonstrate that granular hydrogels exhibit faster transport than comparable bulk hydrogels due to enhanced surface area and decreased diffusion lengths. To demonstrate the potential of modular granular hydrogels to modulate local biomolecule concentrations, microgel scaffolds are engineered that can simultaneously sequester excess pro-inflammatory factors and release pro-healing factors. To target specific biomolecules, microgels are functionalized with affinity ligands that bind either to interleukin 6 (IL-6) or to vascular endothelial growth factor A (VEGF-A). Finally, disparate microgels are combined into a single granular biomaterial for simultaneous sequestration of IL-6 and release of VEGF-A. Overall, the potential of modular granular hydrogels is demonstrated to locally tailor the relative concentrations of pro- and anti-inflammatory factors.

8.
Nat Cell Biol ; 26(4): 552-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561547

RESUMEN

Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.


Asunto(s)
Glucemia , Lipólisis , Fosfatos de Fosfatidilinositol , Animales , Humanos , Ratones , Ácidos Grasos/metabolismo , Glucosa , Lipasa/genética , Lipasa/metabolismo , Lipólisis/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Adv Healthc Mater ; 13(18): e2304287, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38488218

RESUMEN

Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine-tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid-like wound-healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid-like elastic hydrogel. The liquid hydrogels possess low viscosity and shear-thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross-linked solid-like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid-like hydrogels are effective against typical wound-associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio-nanoparticles in hybrid biomaterials with controlled drug release capabilities.


Asunto(s)
Resinas Acrílicas , Materiales Biocompatibles , Hidrogeles , Hidrogeles/química , Hidrogeles/farmacología , Resinas Acrílicas/química , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Viscosidad , Animales , Humanos , Celulosa/química , Ratones
10.
Acta Biomater ; 177: 107-117, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382830

RESUMEN

Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules. The number of self-assembling domains affects the rigidity of the fibers and the final storage modulus G' of the materials. The mechanical properties of the hydrogels could be tuned over a broad range (G' = 0.1 - 10 kPa), making them suitable for the cultivation and differentiation of multiple cell types, including cortical neurons and human mesenchymal stem cells. Moreover, we confirmed the bioavailability of cell attachment domains in the hydrogels that can be further tailored for specific cell types or other biological applications. Finally, we demonstrate the versatility of the designed proteins for application in biofabrication as 3D scaffolds that support cell growth and guide their function. STATEMENT OF SIGNIFICANCE: Designed proteins that enable the decoupling of biophysical and biochemical properties within the final material could enable modular biomaterial engineering. In this context, we present a designed modular protein platform that integrates self-assembling domains (A blocks) and cell-binding domains (B blocks) within a single biopolymer. The linking of assembly domains and cell-binding domains this way provided independent tuning of mechanical properties and inclusion of biofunctional domains. We demonstrate the use of this platform for biofabrication, including neural cell culture and 3D printing of scaffolds for mesenchymal stem cell culture and differentiation. Overall, this work highlights how informed design of biopolymer sequences can enable the modular design of protein-based hydrogels with independently tunable biophysical and biochemical properties.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Humanos , Hidrogeles/química , Proteínas/química , Materiales Biocompatibles/metabolismo , Biopolímeros , Ingeniería de Tejidos
11.
Adv Mater ; 36(23): e2310301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38298130

RESUMEN

Female sterilization via fallopian tube ligation is a common procedure; However, after the operation, over 10% of women seek re-fertilization, which is frequently unsuccessful. In addition, there is evidence that fallopian tubes contribute to the spread of endometriotic tissue as they serve as channels for proinflammatory media entering the abdominal cavity via retrograde menstruation. Here, stimuli-degradable hydrogel implants are presented for the functional, biocompatible, and reversible occlusion of fallopian tubes. The hydrogel implants, designed with customized swelling properties, mechanically occlude fallopian tubes in a high-performance manner with burst pressures reaching 255-558 mmHg, exceeding normal abdominal pressures (95 mmHg). Their damage-free removal can be achieved within 30 min using near-visible UV light or a glutathione solution, employing a method akin to standard fallopian tube perfusion diagnostics. Ultrasound-guided implant placement is demonstrated using a clinical hysteroscope in a human-scale uterus model and biocompatibility in a porcine in vivo model. Importantly, the prevention of live sperm as well as endometrial cell passage through blocked fallopian tubes is demonstrated. Overall, a multifunctional system is presented that constitutes a possible means of on-demand, reversible contraception along with the first-ever mechanical approach to abdominal endometriosis prevention and treatment.


Asunto(s)
Endometriosis , Trompas Uterinas , Hidrogeles , Hidrogeles/química , Femenino , Endometriosis/patología , Animales , Humanos , Porcinos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
12.
Curr Protoc ; 4(1): e966, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206582

RESUMEN

Protein isolation is an essential tool in cell biology to characterize protein abundance under various experimental conditions. Several protocols exist, tailored to cell culture or tissue sections, and have been adapted to particular downstream analyses (e.g., western blotting or mass spectrometry). An increasing trend in bioengineering and cell biology is to use three-dimensional (3D) hydrogel-based scaffolds for cell culture. In principle, the same protocols can be used to extract protein from hydrogel-based cell and tissue constructs. However, in practice the yield and quality of the recovered protein pellet is often substantially lower when using standard protocols and requires tuning of multiple steps, including the selected lysis buffer and the scaffold homogenization strategy, as well as the methods for protein purification and reconstitution. We present here specific protocols tailored to common 3D hydrogels to help researchers using hydrogel-based 3D cell culture improve the quantity and quality of their extracted protein. We focus on three materials: protease-degradable PEG-based hydrogels, collagen hydrogels, and alginate hydrogels. We discuss how the protein extraction procedure can be adapted to the scaffold of interest (degradable or non-degradable gels), proteins of interests (soluble, matrix-bound, or phosphoproteins), and downstream biochemical assays (western blotting or mass spectrometry). With the growing interest in 3D cell culture, the protocols presented should be useful to many researchers in cell biology, protein science, biomaterials, and bioengineering communities. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolating proteins from PEG-based hydrogels Basic Protocol 2: Isolating proteins from collagen hydrogels Basic Protocol 3: Isolating proteins from alginate hydrogels Alternate Protocol: Isolating protein from alginate gels using EDTA to dissolve the gel Support Protocol: Isolating protein and RNA simultaneously from the same samples.


Asunto(s)
Hidrogeles , Fosfoproteínas , Endopeptidasas , Alginatos , Materiales Biocompatibles , Colágeno
13.
Adv Healthc Mater ; 13(4): e2301142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37946678

RESUMEN

Limiting the availability of key angiogenesis-promoting factors is a successful strategy to ablate tumor-supplying blood vessels or to reduce excessive vasculature in diabetic retinopathy. However, the efficacy of such anti-angiogenic therapies (AATs) varies with tumor type, and regrowth of vessels is observed upon termination of treatment. The ability to understand and develop AATs remains limited by a lack of robust in vitro systems for modeling the recovery of vascular networks. Here, complex 3D micro-capillary networks are engineered by sequentially seeding human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (ECs) on a previously established, synthetic plug-and-play hydrogel platform. In the tightly interconnected vascular networks that form this way, the two cell types share a basement membrane-like layer and can be maintained for several days of co-culture. Pre-formed networks degrade in the presence of bevacizumab. Upon treatment termination, vessel structures grow back to their original positions after replenishment with new ECs, which also integrate into unperturbed established networks. The data suggest that this plug-and-play platform enables the screening of drugs with blood-vessel inhibiting functions. It is believed that this platform could be of particular interest in studying resistance or recovery mechanisms to AAT treatment.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Humanos , Células Endoteliales de la Vena Umbilical Humana , Técnicas de Cocultivo , Hidrogeles/farmacología , Neovascularización Fisiológica
14.
Nat Biotechnol ; 42(3): 510-517, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37095347

RESUMEN

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , Vacunas contra la COVID-19/genética , Vacunas de ARNm , ARN Mensajero/genética , SARS-CoV-2/genética , COVID-19/prevención & control
15.
ACS Biomater Sci Eng ; 9(11): 5985-5998, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37797187

RESUMEN

The ability to maintain and differentiate cells in vitro is critical to many advances in the field of bioengineering. However, on traditional, stiff (E ≈ GPa) culture substrates, cells are subjected to sustained mechanical stress that can lead to phenotypic changes. Such changes may remain even after transferring the cells to another scaffold or engrafting them in vivo and bias the outcomes of the biological investigation or clinical treatment. This persistence─or mechanical memory─was initially observed for sustained myofibroblast activation of pulmonary fibroblasts after culturing them on stiff (E ≈ 100 kPa) substrates. Aspects of mechanical memory have now been described in many in vitro contexts. In this Review, we discuss the stiffness-induced effectors of mechanical memory: structural changes in the cytoskeleton and activity of transcription factors and epigenetic modifiers. We then focus on how mechanical memory impacts cell expansion and tissue regeneration outcomes in bioengineering applications relying on prolonged 2D plastic culture, such as stem cell therapies and disease models. We propose that alternatives to traditional cell culture substrates can be used to mitigate or erase mechanical memory and improve the efficiency of downstream cell-based bioengineering applications.


Asunto(s)
Técnicas de Cultivo de Célula , Fibroblastos , Miofibroblastos , Cicatrización de Heridas , Bioingeniería
16.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762247

RESUMEN

Mechanically processed stromal vascular fraction (mSVF) is a highly interesting cell source for regenerative purposes, including wound healing, and a practical alternative to enzymatically isolated SVF. In the clinical context, SVF benefits from scaffolds that facilitate viability and other cellular properties. In the present work, the feasibility of methacrylated gelatin (GelMA), a stiffness-tunable, light-inducible hydrogel with high biocompatibility is investigated as a scaffold for SVF in an in vitro setting. Lipoaspirates from elective surgical procedures were collected and processed to mSVF and mixed with GelMA precursor solutions. Non-encapsulated mSVF served as a control. Viability was measured over 21 days. Secreted basic fibroblast growth factor (bFGF) levels were measured on days 1, 7 and 21 by ELISA. IHC was performed to detect VEGF-A, perilipin-2, and CD73 expression on days 7 and 21. The impact of GelMA-mSVF on human dermal fibroblasts was measured in a co-culture assay by the same viability assay. The viability of cultured GelMA-mSVF was significantly higher after 21 days (p < 0.01) when compared to mSVF alone. Also, GelMA-mSVF secreted stable levels of bFGF over 21 days. While VEGF-A was primarily expressed on day 21, perilipin-2 and CD73-positive cells were observed on days 7 and 21. Finally, GelMA-mSVF significantly improved fibroblast viability as compared with GelMA alone (p < 0.01). GelMA may be a promising scaffold for mSVF as it maintains cell viability and proliferation with the release of growth factors while facilitating adipogenic differentiation, stromal cell marker expression and fibroblast proliferation.


Asunto(s)
Gelatina , Fracción Vascular Estromal , Humanos , Perilipina-2 , Factor A de Crecimiento Endotelial Vascular , Piel , Factor 2 de Crecimiento de Fibroblastos
17.
Sci Adv ; 9(35): eadh9219, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647410

RESUMEN

Hyperosmotic stress occurs in several diseases, but its long-term effects are largely unknown. We used sorbitol-treated human fibroblasts in 3D culture to study the consequences of hyperosmotic stress in the skin. Sorbitol regulated many genes, which help cells cope with the stress condition. The most robustly regulated gene encodes serine protease 35 (PRSS35). Its regulation by hyperosmotic stress was dependent on the kinases p38 and JNK and the transcription factors NFAT5 and ATF2. We identified different collagens and collagen-associated proteins as putative PRSS35 binding partners. This is functionally important because PRSS35 affected the extracellular matrix proteome, which limited cell proliferation. The in vivo relevance of these findings is reflected by the coexpression of PRSS35 and its binding partners in human skin wounds, where hyperosmotic stress occurs as a consequence of excessive water loss. These results identify PRSS35 as a key regulator of the matrisome under hyperosmotic stress conditions.


Asunto(s)
Matriz Extracelular , Fibroblastos , Humanos , Endopeptidasas , Sorbitol , Serina Proteasas
18.
Ann Surg ; 278(5): 669-675, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497663

RESUMEN

OBJECTIVE: To develop a protocol for the defatting of steatotic liver grafts during long-term ex situ normothermic machine perfusion. BACKGROUND: Despite the alarming increase in donor organ shortage, the highly prevalent fatty liver grafts are often discarded due to the risk of primary nonfunction. Effective strategies preventing such outcomes are currently lacking. An exciting new avenue is the introduction of ex situ normothermic machine perfusion (NMP), enabling a liver to remain fully functional for up to 2 weeks and providing a unique window of opportunity for defatting before transplantation. METHODS: Over a 5-year period, 23 discarded liver grafts and 28 partial livers from our resection program were tested during ex situ normothermic machine perfusion. The steatosis degree was determined on serial biopsies by expert pathologists, and triglyceride contents were measured simultaneously. RESULTS: Of 51 liver grafts, 20 were steatotic, with up to 85% macrovesicular steatosis, and were perfused for up to 12 days. Ten livers displayed marked (5 of which almost complete) loss of fat, while the other 10 did not respond to long-term perfusion. Successful defatting was related to prolonged perfusion, automated glucose control, circadian nutrition, and L-carnitine/fenofibrate supplementation. Pseudopeliotic steatosis and the associated activation of Kupffer/stellate cells were unexpected processes that might contribute to defatting. Synthetic and metabolic functions remained preserved for most grafts until perfusion ended. CONCLUSION: Ex situ long-term perfusion effectively reduces steatosis while preserving organ viability and may in the future allow transplantation of primarily unusable high-risk grafts, significantly increasing the number of organs available for transplantation.


Asunto(s)
Hígado Graso , Trasplante de Hígado , Humanos , Preservación de Órganos/métodos , Hígado/patología , Trasplante de Hígado/métodos , Perfusión/métodos
19.
Adv Sci (Weinh) ; 10(23): e2301537, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37265001

RESUMEN

Biomarkers are powerful clinical diagnostics and predictors of patient outcome. However, robust measurements often require time and expensive laboratory equipment, which is insufficient to track rapid changes and limits direct use in the operating room. Here, this study presents a portable spectrophotometric device for continuous real-time measurements of fluorescent and non-fluorescent biomarkers at the point of care. This study measures the mitochondrial damage biomarker flavin mononucleotide (FMN) in 26 extended criteria human liver grafts undergoing hypothermic oxygenated perfusion to guide clinical graft assessment. Real-time data identified seven organs unsuitable for transplant that are discarded. The remaining grafts are transplanted and FMN values correlated with post-transplant indicators of liver function and patient recovery. Further, this study shows how this device can be used to monitor dialysis patients by measuring creatinine in real-time. Our approach provides a simple method to monitor biomarkers directly within biological fluids to improve organ assessment, patient care, and biomarker discovery.


Asunto(s)
Trasplante de Hígado , Preservación de Órganos , Humanos , Preservación de Órganos/métodos , Trasplante de Hígado/métodos , Perfusión/métodos , Monitoreo Fisiológico
20.
Biomater Adv ; 145: 213241, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529095

RESUMEN

Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Mecanotransducción Celular , Presión Hidrostática , Presión Osmótica , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...