Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893818

RESUMEN

In this work, we focus on a detailed study of the role of each component layer in the multilayer structure of a magnetic tunnel junction (MTJ) as well as the analysis of the effects that the deposition parameters of the thin films have on the performance of the structure. Various techniques including atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the effects of deposition parameters on the surface roughness and thickness of individual layers within the MTJ structure. Furthermore, this study investigates the influence of thin films thickness on the magnetoresistive properties of the MTJ structure, focusing on the free ferromagnetic layer and the barrier layer (MgO). Through systematic analysis and optimization of the deposition parameters, this study demonstrates a significant improvement in the tunnel magnetoresistance (TMR) of the MTJ structure of 10% on average, highlighting the importance of precise control over thin films properties for enhancing device performance.

2.
Sci Rep ; 12(1): 16698, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202902

RESUMEN

Magnetic nanomaterials are increasingly impacting the field of biology and medicine. Their versatility in terms of shape, structure, composition, coating, and magnetic responsivity make them attractive for drug delivery, cell targeting and imaging. Adipose derived-mesenchymal cells (ASCs) are intensely scrutinized for tissue engineering and regenerative medicine. However, differentiation into musculoskeletal lineages can be challenging. In this paper, we show that uncoated nickel nanowires (Ni NW) partially released from their alumina membrane offer a mechanically-responsive substrate with regular topography that can be used for the delivery of magneto-mechanical stimulation. We have used a tailored protocol for improving ASCs adherence to the substrate, and showed that cells retain their characteristic fibroblastic appearance, cytoskeletal fiber distribution and good viability. We report here for the first time significant increase in osteogenic but not adipogenic differentiation of ASCs on Ni NW exposed to 4 mT magnetic field compared to non-exposed. Moreover, magnetic actuation is shown to induce ASCs osteogenesis but not adipogenesis in the absence of external biochemical cues. While these findings need to be verified in vivo, the use of Ni NW substrate for inducing osteogenesis in the absence of specific differentiation factors is attractive for bone engineering. Implant coating with similar surfaces for orthopedic and dentistry could be as well envisaged as a modality to improve osteointegration.


Asunto(s)
Nanocables , Osteogénesis , Tejido Adiposo/metabolismo , Óxido de Aluminio , Diferenciación Celular , Células Cultivadas , Fenómenos Magnéticos , Níquel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA