RESUMEN
Hepatocellular carcinoma (HCC) is the most common and deadliest subtype of liver cancer worldwide and, therefore, poses an enormous threat to global health. Understanding the molecular mechanisms underlying the development and progression of HCC is central to improving our clinical approaches. PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that bind to PIWI family proteins to regulate gene expression at transcriptional and post-transcriptional levels. A growing body of work shows that the dysregulation of piRNAs plays a crucial role in the progression of various human cancers. In this editorial, we report on the current knowledge of HCC-associated piRNAs and their potential clinical utility. Based on the editorial by Papadopoulos and Trifylli, on the role and clinical evaluation of exosomal circular RNAs in HCC, we highlight this other emerging class of non-coding RNAs.
Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Interferente Pequeño , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , ARN Interferente Pequeño/metabolismo , Exosomas/metabolismo , Exosomas/genética , ARN Circular/metabolismo , ARN Circular/genética , Progresión de la Enfermedad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismoRESUMEN
Ovarian cancer (OC) remains the most fatal disease of gynaecologic malignant tumours. The neovasculature in the tumour microenvironment principally comprises endothelial cells. Haematogenous cancer metastases are significantly impacted by tumour neovascularisation, which predominantly depends on the tumour-derived endothelial vasculogenesis. There is an urgent need for biomarkers for the diagnosis, prognosis and prediction of drug response. Endothelial cells play a key role in angiogenesis and other forms of tumour vascularisation. Subtypes of circulating endothelial cells may provide interesting non-invasive biomarkers of advanced OC that might have the potential to be included in clinical analysis for patients' stratification and therapeutic management. In this review, we summarise the reported studies on circulating endothelial subtypes in OC, detailing their isolation methods as well as their potential diagnostic, prognostic, predictive and therapeutic utility for clinical application. We highlight key biomarkers for the identification of circulating endothelial cell subtypes and their targets for therapies and critically point out future challenges.
Asunto(s)
Biomarcadores de Tumor , Células Endoteliales , Neovascularización Patológica , Neoplasias Ováricas , Humanos , Femenino , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Neoplasias Ováricas/sangre , Células Endoteliales/metabolismo , Células Endoteliales/patología , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral , Pronóstico , AngiogénesisRESUMEN
BACKGROUND: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS: 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS: 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION: Our data strongly support the potential therapeutic value of 2c/derivatives in OC.
RESUMEN
Breast cancer (BC) is currently the most common neoplasm, the second leading cause of cancer death in women worldwide, and is a major health problem. The discovery of new biomarkers is crucial to improve our knowledge of breast cancer and strengthen our clinical approaches to diagnosis, prognosis, and follow-up. In recent decades, there has been increasing interest in circulating RNA (circRNA) as modulators of gene expression involved in tumor development and progression. The study of circulating circRNAs (ccircRNAs) in plasma may provide new non-invasive diagnostic, prognostic, and predictive biomarkers for BC. This review describes the latest findings on BC-associated ccircRNAs in plasma and their clinical utility. Several ccircRNAs in plasma have shown great potential as BC biomarkers, especially from a diagnostic point of view. Mechanistically, most of the reported BC-associated ccircRNAs are involved in the regulation of cell survival, proliferation, and invasion, mainly via MAPK/AKT signaling pathways. However, the study of circRNAs is a relatively new area of research, and a larger number of studies will be crucial to confirm their potential as plasma biomarkers and to understand their involvement in BC.
RESUMEN
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Asunto(s)
Asma , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Trastornos Respiratorios , Humanos , Moco/metabolismo , Trastornos Respiratorios/metabolismo , Sistema Respiratorio/metabolismo , Fibrosis Quística/metabolismo , Asma/metabolismo , Esputo/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucinas/metabolismoRESUMEN
Urothelial carcinoma (UC), the sixth most common cancer in Western countries, includes upper tract urothelial carcinoma (UTUC) and bladder carcinoma (BC) as the most common cancers among UCs (90-95%). BC is the most common cancer and can be a highly heterogeneous disease, including both non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) forms with different oncologic outcomes. Approximately 80% of new BC diagnoses are classified as NMIBC after the initial transurethral resection of the bladder tumor (TURBt). In this setting, intravesical instillation of Bacillus Calmette-Guerin (BCG) is the current standard treatment for intermediate- and high-risk patients. Unfortunately, recurrence occurs in 30% to 40% of patients despite adequate BCG treatment. Radical cystectomy (RC) is currently considered the standard treatment for NMIBC that does not respond to BCG. However, RC is a complex surgical procedure with a recognized high perioperative morbidity that is dependent on the patient, disease behaviors, and surgical factors and is associated with a significant impact on quality of life. Therefore, there is an unmet clinical need for alternative bladder-preserving treatments for patients who desire a bladder-sparing approach or are too frail for major surgery. In this review, we aim to present the strategies in BCG-unresponsive NMIBC, focusing on novel molecular therapeutic targets.
Asunto(s)
Carcinoma de Células Transicionales , Mycobacterium bovis , Neoplasias Vesicales sin Invasión Muscular , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Vacuna BCG/uso terapéutico , Calidad de VidaRESUMEN
The poor survival of triple-negative breast cancer (TNBC) is due to its aggressive behavior, large heterogeneity, and high risk of recurrence. A comprehensive molecular investigation of this type of breast cancer using high-throughput next-generation sequencing (NGS) methods may help to elucidate its potential progression and discover biomarkers related to patient survival. In this review, the NGS applications in TNBC research are described. Many NGS studies point to TP53 mutations, immunocheckpoint response genes, and aberrations in the PIK3CA and DNA repair pathways as recurrent pathogenic alterations in TNBC. Beyond their diagnostic and predictive/prognostic value, these findings suggest potential personalized treatments in PD -L1-positive TNBC or in TNBC with a homologous recombination deficit. Moreover, the comprehensive sequencing of large genomes with NGS has enabled the identification of novel markers with clinical value in TNBC, such as AURKA, MYC, and JARID2 mutations. In addition, NGS investigations to explore ethnicity-specific alterations have pointed to EZH2 overexpression, BRCA1 alterations, and a BRCA2-delaAAGA mutation as possible molecular signatures of African and African American TNBC. Finally, the development of long-read sequencing methods and their combination with optimized short-read techniques promise to improve the efficiency of NGS approaches for future massive clinical use.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Mutación , Biomarcadores , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
BACKGROUND: In Western countries, breast cancer (BC) is the most common cancer in women. Early detection has a positive impact on survival, quality of life, and public health costs. Mammography screening programs have increased early detection rates, but new approaches to more personalized surveillance could further improve diagnosis. Circulating cell-free DNA (cfDNA) in blood could provide a potential tool for early diagnosis by analyzing cfDNA quantity, circulating tumor DNA mutations, or cfDNA integrity (cfDI). METHODS: Plasma was obtained from the blood of 106 breast cancer patients (cases) and 103 healthy women (controls). Digital droplet PCR was used for the determination of ALU 260/111 bp and LINE-1 266/97 bp copy number ratio and cfDI. cfDNA abundance was calculated using copies of the EEF1A2 gene. The accuracy of biomarker discrimination was analyzed with receiver operating characteristic curve (ROC). Sensitivity analyses were performed to account for age as a potential confounder. RESULTS: Cases had significantly lower ALU 260/111 or LINE-1 266/97 copy number ratios (median; ALU 260/111 = 0.08, LINE-1 266/97 = 0.20), compared with control (median; ALU 260/111 = 0.10, LINE-1 266/97 = 0.28) (p < 0.001). ROC analysis showed that copy number ratio discriminated cases from controls (area under the curve, AUC = 0.69, 95% CI: 0.62-0.76 for ALU and 0.80, 95% CI: 0.73-0.86 for LINE-1). ROC from cfDI confirmed the better diagnostic performance of LINE-1 compared with ALU. CONCLUSIONS: Analysis of LINE-1 266/97 copy number ratio or cfDI by ddPCR appears to be a useful noninvasive test that could aid in early BC detection. Further studies in a large cohort are needed to validate the biomarker.
Asunto(s)
Neoplasias de la Mama , Ácidos Nucleicos Libres de Células , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN , Calidad de Vida , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , ADN de Neoplasias , Reacción en Cadena de la Polimerasa , Factor 1 de Elongación Peptídica/genéticaRESUMEN
Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.
RESUMEN
Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs' heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c).
Asunto(s)
Antineoplásicos , Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Humanos , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Biomarcadores de Tumor/metabolismoRESUMEN
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer due to its molecular heterogeneity and poor clinical outcomes. Analysis of circulating cell-free tumor nucleic acids (ctNAs) can improve our understanding of TNBC and provide efficient and non-invasive clinical biomarkers that may be representative of tumor heterogeneity. In this review, we summarize the potential of ctNAs to aid TNBC diagnosis and prognosis. For example, tumor fraction of circulating cell-free DNA (TFx) may be useful for molecular prognosis of TNBC: high TFx levels after neoadjuvant chemotherapy have been associated with shorter progression-free survival and relapse-free survival. Mutations and copy number variations of TP53 and PIK3CA/AKT genes in plasma may be important markers of TNBC onset, progression, metastasis, and for clinical follow-up. In contrast, the expression profile of circulating cell-free tumor non-coding RNAs (ctncRNAs) can be predictive of molecular subtypes of breast cancer and thus aid in the identification of TBNC. Finally, dysregulation of some circulating cell-free tumor miRNAs (miR17, miR19a, miR19b, miR25, miR93, miR105, miR199a) may have a predictive value for chemotherapy resistance. In conclusion, a growing number of efforts are highlighting the potential of ctNAs for future clinical applications in the diagnosis, prognosis, and follow-up of TNBC.
Asunto(s)
Ácidos Nucleicos Libres de Células , MicroARN Circulante , MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN , Biomarcadores de Tumor/genética , Recurrencia Local de Neoplasia , MicroARNs/genética , MicroARN Circulante/uso terapéuticoRESUMEN
Despite the progress made in the diagnoses and therapy of gastrointestinal cancers, these diseases are still plagued by a high mortality. Thus, novel therapeutic approaches are urgently required. In this regard, small interfering RNA (siRNA), double-stranded RNA molecules able to specifically target the mRNA of pathological genes, have the potential to be of therapeutic value. To be effective in the human body, siRNAs need to be protected against degradation. Additionally, they need to target the tumor, leaving the normal tissue untouched in an effort to preserve organ function. To accomplish these tasks, siRNAs have been formulated with smart delivery systems such has polymers and lipids. While siRNA protection is not particularly difficult to achieve, their targeting of tumor cells remains problematic. Here, after introducing the general features of gastrointestinal cancers, we describe siRNA characteristics together with representative delivery systems developed for gastrointestinal cancers. Afterward, we present a selection of research papers employing siRNAs against upper- and lower- gastrointestinal cancers. For the liver, we also consider papers using siRNAs to combat liver cirrhosis, a relevant risk factor for liver cancer development. Finally, we present a brief description of clinical trials employing siRNAs for gastrointestinal cancers.
RESUMEN
High-grade serous ovarian cancer (HGSOC) is among the deadliest gynecological malignancies. The acquired resistance to platinum-based therapies and the intrinsic heterogeneity of the disease contribute to the low survival rate. To improve patients' outcomes, new combinatorial approaches able to target different tumor vulnerabilities and enhance the efficacy of the current therapies are required. AKT inhibitors are promising antineoplastic agents able to act in synergy with PARP inhibitors, but the spectrum of patients who can benefit from this combination is unclear, since the role of the three different isoforms of AKT is still unknown. Here, we study the expression of AKT isoforms on a retrospective cohort of archive tissue by RT-droplet digital PCR (ddPCR) analyzing their association with the clinicopathological features of patients. Based on AKT1/AKT2 and AKT1/AKT3 ratios, we define four AKT classes which were related to patients' survival, tumor morphology and BRCA1 expression. Moreover, our results show that high AKT3 expression levels were frequently associated with tumors having classic features, a low number of mitoses and the presence of psammoma bodies. Overall, our study obtains new insights on AKT isoforms and their associations with the clinicopathological features of HGSOC patients. These evidences could help to better define the subsets of patients who can benefit from AKT and PARP inhibitors therapy in future clinical trials.
RESUMEN
RNA isolated from fixed and paraffin-embedded tissues is widely used in biomedical research and molecular pathology for diagnosis. In the present study, we have set-up a method based on high performance liquid chromatography (HPLC) to investigate the effects of different fixatives on RNA. By the application of the presented method, which is based on the Nuclease S1 enzymatic digestion of RNA extracts followed by a HPLC analysis, it is possible to quantify the unmodified nucleotide monophosphates (NMPs) in the mixture and recognize their hydroxymethyl derivatives as well as other un-canonical RNA moieties. The results obtained from a set of mouse livers fixed/embedded with different protocols as well from a set of clinical samples aged 0 to 30 years-old show that alcohol-based fixatives do not induce chemical modification of the nucleic acid under ISO standard recommendations and confirm that pre-analytical conditions play a major role in RNA preservation.
Asunto(s)
Cromatografía Liquida/métodos , ARN/química , Adhesión del Tejido/métodos , Fijación del Tejido/métodos , Animales , Fijadores/efectos adversos , Hígado/química , Ratones , ARN/análisis , Adhesión del Tejido/normas , Fijación del Tejido/normasRESUMEN
The ability to measure mechanical response of cells under applied load is essential for developing more accurate models of cell mechanics and mechanotransduction. Living cells have been mechanically investigated by several approaches. Among them, atomic force microscopy (AFM) is widely used thanks to its high versatility and sensitivity. In the case of large cells or 3D multicellular aggregates, standard AFM probes may not be appropriate to investigate the mechanical properties of the whole biological system. Owing to their size, standard AFM probes can compress only a single somatic cell or part of it. To fill this gap, we have designed and fabricated planar AFM macro-probes compatible with commercial AFM instruments. The probes are constituted of a large flat compression plate, connected to the chip by two flexible arms, whose mechanical characteristics are tuned for specific biological applications. As proof of concept, we have used the macro-probes to measure the viscoelasticity of large spherical biological systems, which have a diameter above 100⯵m: human oocytes and 3D cell spheroids. Compression experiments are combined with visual inspection, using a side-view configuration imaging, which allows us to monitor the sample morphology during the compression and to correlate it with the viscoelastic parameters. Our measurements provide a quantitative estimate of the relaxation times of such biological systems, which are discussed in relation to data present in literature. The broad applicability of the AFM macro-probes can be relevant to study the biomechanical features in any biological process involving large soft materials. STATEMENT OF SIGNIFICANCE: The understanding of the role of physical factors in defining cell and tissue functions requires to develop new methods or improve the existing ones to accurately measure the biomechanical properties. AFM is a sensitive and versatile tool to measure the mechanical features from single proteins to single cells. When cells or cell aggregates exceed few tens of microns, AFM suffers from limitations. On these biological systems the control of the contact area and the application of a precise uniform compression becomes crucial. A modification of the standard cantilevers fabrication allowed us obtaining AFM macro-probes, having large planar contact area and spring constant suitable for biological investigations. They were demonstrated valuable to characterize the mechanical properties of large hierarchical biological systems.