Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biores Open Access ; 2(5): 336-45, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24083089

RESUMEN

Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen-positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology.

2.
Stem Cells Dev ; 21(3): 455-64, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21933024

RESUMEN

Multipotent mesenchymal stem cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. However, there is a lack of methods to quickly and efficiently isolate, characterize, and ex vivo expand desired cell populations for therapeutic purposes. Single markers to identify cell populations have not been characterized; instead, all characterizations rely on panels of functional and phenotypical properties. Glycan epitopes can be used for identifying and isolating specific cell types from heterogeneous populations, on the basis of their cell-type specific expression and prominent cell surface localization. We have now studied in detail the cell surface expression of the blood group i epitope (linear poly-N-acetyllactosamine chain) in umbilical cord blood (UCB)-derived MSCs. We used flow cytometry and mass spectrometric glycan analysis and discovered that linear poly-N-acetyllactosamine structures are expressed in UCB-derived MSCs, but not in cells differentiated from them. We further verified the findings by mass spectrometric glycan analysis. Gene expression analysis indicated that the stem-cell specific expression of the i antigen is determined by ß3-N-acetylglucosaminyltransferase 5. The i antigen is a ligand for the galectin family of soluble lectins. We found concomitant cell surface expression of galectin-3, which has been reported to mediate the immunosuppressive effects exerted by MSCs. The i antigen may serve as an endogenous ligand for this immunosuppressive agent in the MSC microenvironment. Based on these findings, we suggest that linear poly-N-acetyllactosamine could be used as a novel UCB-MSC marker either alone or within an array of MSC markers.


Asunto(s)
Sangre Fetal/citología , Galectina 3/metabolismo , Sistema del Grupo Sanguíneo I/metabolismo , Células Madre Mesenquimatosas/citología , Amino Azúcares/metabolismo , Biomarcadores/análisis , Diferenciación Celular , Epítopos/química , Sangre Fetal/metabolismo , Citometría de Flujo , Galectina 3/genética , Perfilación de la Expresión Génica , Humanos , Ligandos , Espectrometría de Masas , Células Madre Mesenquimatosas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Nicho de Células Madre
3.
Glycoconj J ; 26(3): 367-84, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19037724

RESUMEN

Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and alpha2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Glicómica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Conformación de Carbohidratos , Secuencia de Carbohidratos , Línea Celular , Citometría de Flujo , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Unión Proteica , Reproducibilidad de los Resultados
4.
Clin Lab ; 54(9-10): 347-54, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19097492

RESUMEN

Two forms of tartrate-resistant acid phosphatase (TRACP) circulate in human blood, TRACP 5a derived from inflammatory macrophages and TRACP 5b derived from osteoclasts. We compared the clinical performance of the following TRACP immunoassays for monitoring alendronate treatment in postmenopausal women: 1) TRACP 5b activity using a selective pH; 2) TRACP 5b activity using a selective substrate; 3) Total TRACP activity; 4) Total TRACP protein amount; 5) TRACP 5a activity; 6) TRACP 5a protein amount. TRACP and other bone turnover markers were measured before the start of treatment and at 3 months. Alendronate treatment decreased TRACP values determined with assays 1, 2 and 3, and had no effect on the values determined with assays 4, 5 and 6. Clinical performance of assays 1, 2 and 3 was good, and these assays correlated with each other and with the other bone markers. This study showed that TRACP 5b specific methods are useful for monitoring changes in bone resorption during alendronate treatment, and alendronate treatment does not affect serum TRACP 5a levels.


Asunto(s)
Fosfatasa Ácida/sangre , Alendronato/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Monitoreo de Drogas/métodos , Técnicas para Inmunoenzimas/métodos , Isoenzimas/sangre , Femenino , Humanos , Posmenopausia , Curva ROC , Ensayos Clínicos Controlados Aleatorios como Asunto , Fosfatasa Ácida Tartratorresistente
5.
Transplantation ; 83(7): 948-53, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17460567

RESUMEN

BACKGROUND: Cold storage of tissues induces reactive oxygen species (ROS), which contribute to cell injury. We have compared different antioxidants in protection of renal tubular cells against hypothermia injury and studied their effect on cold-induced mitogen-activated protein (MAP) kinase activation. METHODS: Cultured renal tubular epithelial cells (LLC-PK1) were stored in University of Wisconsin solution supplemented with compounds tested for 16 hr at 4 degrees C. Release of lactate dehydrogenase and cellular adenosine triphosphate were measured. Activation of MAP kinases was determined by Western blotting. Intracellular ROS were monitored with a fluorescent probe. RESULTS: Cold storage resulted in a substantial loss of cell viability. The simple phenol butylated hydroxyanisol (BHA) most effectively prevented hypothermia-induced cell injury, whereas about 100-fold higher concentration of the polyphenol epigallocatechin gallate (EGCG) was needed, although EGCG most effectively scavenged intracellular ROS elicited by serum withdrawal. The MEK inhibitor U0126 and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyleneiodonium effectively protected the cells against hypothermia injury. ERK1/2 was rapidly activated during chilling of the cells and this was inhibited by BHA but not by EGCG. CONCLUSION: The results suggest that chilling of renal epithelial cells induces ROS generation by NADPH oxidase, which leads to rapid activation of the MEK-ERK1/2 cascade and initiation of cell injury. This can be prevented by antioxidants.


Asunto(s)
Antioxidantes/farmacología , Túbulos Renales/citología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fenoles/farmacología , Animales , Línea Celular , Frío , Activación Enzimática , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/enzimología , L-Lactato Deshidrogenasa/análisis , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Preservación de Órganos , Especies Reactivas de Oxígeno , Porcinos
6.
Stem Cells ; 25(1): 197-202, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17008421

RESUMEN

Human embryonic and mesenchymal stem cell therapies may offer significant benefit to a large number of patients. Recently, however, human embryonic stem cell lines cultured on mouse feeder cells were reported to be contaminated by the xeno-carbohydrate N-glycolylneuraminic acid (Neu5Gc) and considered potentially unfit for human therapy. To determine the extent of the problem of Neu5Gc contamination for the development of stem cell therapies, we investigated whether it also occurs in cells cultured on human feeder cells and in mesenchymal stem cells, what are the sources of contamination, and whether the contamination is reversible. We found that N-glycolylneuraminic acid was present in embryonic stem cells cultured on human feeder cells, correlating with the presence of Neu5Gc in components of the commercial serum replacement culture medium. Similar contamination occurred in mesenchymal stem cells cultured in the presence of fetal bovine serum. The results suggest that the Neu5Gc is present in both glycoprotein and lipid-linked glycans, as detected by mass spectrometric analysis and monoclonal antibody staining, respectively. Significantly, the contamination was largely reversible in the progeny of both cell types, suggesting that decontaminated cells may be derived from existing stem cell lines. Although major complications have not been reported in the clinical trials with mesenchymal stem cells exposed to fetal bovine serum, the immunogenic contamination may potentially be reflected in the viability and efficacy of the transplanted cells and thus bias the published results. Definition of safe culture conditions for stem cells is essential for future development of cellular therapies.


Asunto(s)
Antígenos Heterófilos/farmacología , Células Madre Embrionarias/fisiología , Células Madre Mesenquimatosas/fisiología , Ácidos Neuramínicos/inmunología , Ácidos Neuramínicos/farmacología , Anticuerpos/farmacología , Especificidad de Anticuerpos , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Citometría de Flujo , Homeostasis , Humanos , Inmunohistoquímica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Fenotipo , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Clin Lab ; 52(9-10): 499-509, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17078477

RESUMEN

Tartrate-resistant acid phosphatase (TRACP) is an enzyme that is expressed in high amounts by bone resorbing osteoclasts, inflammatory macrophages and dendritic cells. Two forms of TRACP circulate in human blood, TRACP 5a derived from macrophages and dendritic cells, and TRACP 5b derived from osteoclasts. Recent data have demonstrated the utility of TRACP 5b as a marker of osteoclast number and bone resorption, and serum TRACP 5a as a marker of inflammatory conditions. This review summarizes the scientific knowledge on the role of TRACP in osteoclastic bone resorption, the mechanism of TRACP 5b generation in osteoclasts and its secretion into the blood circulation, the methodology of measuring TRACP 5b, diagnostic evidence for the use of TRACP 5b as a resorption marker, and characteristics of TRACP 5b compared to other commonly used bone turnover markers.


Asunto(s)
Fosfatasa Ácida/sangre , Fosfatasa Ácida/metabolismo , Resorción Ósea/diagnóstico , Inmunoensayo/métodos , Isoenzimas/sangre , Isoenzimas/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/terapia , Recuento de Células , Estabilidad de Enzimas , Humanos , Monitoreo Fisiológico , Osteoclastos/enzimología , Isoformas de Proteínas/sangre , Isoformas de Proteínas/metabolismo , Fosfatasa Ácida Tartratorresistente
8.
Arch Biochem Biophys ; 449(1-2): 1-7, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16620768

RESUMEN

Osteoclasts and macrophages express high amounts of tartrate-resistant acid phosphatase (TRACP), an enzyme with unknown biological function. TRACP contains a disulfide bond, a protease-sensitive loop peptide, and a redox-active iron that can catalyze formation of reactive oxygen species (ROS). We studied the effects of proteolytic cleavage by trypsin, reduction of the disulfide bond by beta-mercaptoethanol, and reduction of the redox-active iron by ascorbate on the phosphatase and ROS-generating activity of baculovirus-generated recombinant human TRACP. Ascorbate alone and trypsin in combination with beta-mercaptoethanol increased k(cat)/K(m) of the phosphatase activity seven- to ninefold. The pH-optimum was changed from 5.4-5.6 to 6.2-6.4 by ascorbate and trypsin cleavage. Trypsin cleavage increased k(cat)/K(m) of the ROS-generating activity 2.5-fold without affecting the pH-optimum (7.0). These results suggest that the protease-sensitive loop peptide, redox-active iron, and disulfide bond are important regulatory sites in TRACP, and that the phosphatase and ROS-generating activity are performed with different reaction mechanisms.


Asunto(s)
Fosfatasa Ácida/química , Isoenzimas/química , Péptido Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Especies Reactivas de Oxígeno/química , Activación Enzimática , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Unión Proteica , Proteínas Recombinantes/metabolismo , Fosfatasa Ácida Tartratorresistente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...