Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333134

RESUMEN

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.

2.
Methods Mol Biol ; 2583: 149-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36418732

RESUMEN

Diverse metabolic disorders can disrupt brain growth, and analyzing metabolism in animal models of microcephaly may reveal new mechanisms of pathogenesis. The metabolism of functioning cells in a living organism is constantly changing in response to a changing environment, circadian rhythms, consumed food, drugs, progressing sicknesses, aging, and many other factors. Metabolic profiling can give important insights into the working machinery of the cell. However, a frozen snapshot of the interconnected, complex network of reactions gives very limited information about this system. Flux analysis using stable isotope labels enables more robust metabolic studies that consider interrogate metabolite processing and changes in molecular concentrations over time.


Asunto(s)
Enfermedades Metabólicas , Microcefalia , Animales , Ratones , Ritmo Circadiano/fisiología , Isótopos , Enfermedades Metabólicas/diagnóstico , Metabolómica , Microcefalia/complicaciones
3.
Methods Mol Biol ; 2394: 267-298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35094334

RESUMEN

The Environmental Protection Agency's definition of "Green Chemistry" is "the design of chemical products and processes that reduces or eliminates the use or generation of hazardous substances. Green chemistry applies across the life cycle of a chemical product, including its design, manufacture, use, and ultimate disposal." Conventional omic tissue extraction procedures use solvents that are toxic and carcinogenic, such as chloroform and methyl-tert-butyl ether for lipidomics, or caustic chaotropic solutions for genomics and transcriptomics, such as guanidine or urea. A common preservation solution for pathology is formaldehyde, which is a carcinogen. Use of acetonitrile as a universal biospecimen preservation and extraction solvent will reduce these hazardous wastes, because it is less toxic and more environmentally friendly than the conventional solvents used in biorepository and biospecimen research. A new extraction method never applied to multi-omic, system biology research, called cold-induced phase separation (CIPS), uses freezing point temperatures to induce a phase separation of acetonitrile-water mixtures. Also, the CO2 exposure during CIPS will acidify the water precipitating DNA out of aqueous phase. The resulting phase separation brings hydrophobic lipids to the top acetonitrile fraction that is easily decanted from the bottom aqueous fraction, especially when the water is frozen. This CIPS acetonitrile extract contains the lipidome (lipids), the bottom aqueous fraction is sampled to obtain the transcriptome (RNA) fraction, and the remaining water and pellet is extracted with 60% acetonitrile to isolate the metabolome (<1 kD polar molecules). Finally, steps 4 and 5 use a TRIzol™ liquid-liquid extraction SOP of the pellet to isolate the genome (DNA) and proteome (proteins). This chapter details the multi-omic sequential extraction SOP and potential problems associated with each of the 5 steps, with steps 2, 4, and 5 still requiring validation. The metabolomic and lipidomic extraction efficiencies using the CIPS SOP is compared to conventional solvent extraction SOPs and is analyzed by nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS), respectively. Acetonitrile biospecimen preservation combined with the CIPS multi-omic extraction SOP is green chemistry technology that will eliminate the generation of the hazardous substances associated with biospecimen processing and permits separation and safe disposal of acetonitrile avoiding environmental contamination.


Asunto(s)
Lipidómica , Metabolómica , Cromatografía Liquida , Espectrometría de Masas , Solventes/química
5.
Biochim Biophys Acta Gen Subj ; 1864(4): 129507, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31881245

RESUMEN

BACKGROUND: Imatinib mesylate (imatinib) is the first-line treatment for newly diagnosed chronic myeloid leukemia (CML) due to its remarkable hematologic and cytogenetic responses. We previously demonstrated that the imatinib-resistant CML cells (Myl-R) contained elevated Lyn activity and intracellular creatine pools compared to imatinib-sensitive Myl cells. METHODS: Stable isotope metabolic labeling, media creatine depletion, and Na+/K+-ATPase inhibitor experiments were performed to investigate the origin of creatine pools in Myl-R cells. Inhibition and shRNA knockdown were performed to investigate the specific role of Lyn in regulating the Na+/K+-ATPase and creatine uptake. RESULTS: Inhibition of the Na+/K+-ATPase pump (ouabain, digitoxin), depletion of extracellular creatine or inhibition of Lyn kinase (ponatinib, dasatinib), demonstrated that enhanced creatine accumulation in Myl-R cells was dependent on uptake from the growth media. Creatine uptake was independent of the Na+/creatine symporter (SLC6A8) expression or de novo synthesis. Western blot analyses showed that phosphorylation of the Na+/K+-ATPase on Tyr 10 (Y10), a known regulatory phosphorylation site, correlated with Lyn activity. Overexpression of Lyn in HEK293 cells increased Y10 phosphorylation (pY10) of the Na+/K+-ATPase, whereas Lyn inhibition or shRNA knockdown reduced Na+/K+-ATPase pY10 and decreased creatine accumulation in Myl-R cells. Consistent with enhanced uptake in Myl-R cells, cyclocreatine (Ccr), a cytotoxic creatine analog, caused significant loss of viability in Myl-R compared to Myl cells. CONCLUSIONS: These data suggest that Lyn can affect creatine uptake through Lyn-dependent phosphorylation and regulation of the Na+/K+-ATPase pump activity. GENERAL SIGNIFICANCE: These studies identify kinase regulation of the Na+/K+-ATPase as pivotal in regulating creatine uptake and energy metabolism in cells.


Asunto(s)
Antineoplásicos/farmacología , Creatina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Familia-src Quinasas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Tumorales Cultivadas
6.
PLoS One ; 14(11): e0225449, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31747445

RESUMEN

Environmental and endogenous electrophiles cause tissue damage through their high reactivity with endogenous nucleophiles such as DNA, proteins, and lipids. Protection against damage is mediated by glutathione (GSH) conjugation, which can occur spontaneously or be facilitated by the glutathione S-transferase (GST) enzymes. To determine the role of GST enzymes in protection against electrophiles as well as the role of specific GST families in mediating this protection, we exposed mutant mouse lines lacking the GSTP, GSTM, and/or GSTT enzyme families to the model electrophile acrylamide, a ubiquitous dietary contaminant known to cause adverse effects in humans. An analysis of urinary metabolites after acute acrylamide exposure identified the GSTM family as the primary mediator of GSH conjugation to acrylamide. However, surprisingly, mice lacking only this enzyme family did not show increased toxicity after an acute acrylamide exposure. Therefore, GSH conjugation is not the sole mechanism by which GSTs protect against the toxicity of this substrate. Given the prevalence of null GST polymorphisms in the human population (approximately 50% for GSTM1 and 20-50% for GSTT1), a substantial portion of the population may also have impaired acrylamide metabolism. However, our study also defines a role for GSTP and/or GSTT in protection against acrylamide mediated toxicity. Thus, while the canonical detoxification function of GSTs may be impaired in GSTM null individuals, disease risk secondary to acrylamide exposure may be mitigated through non-canonical pathways involving members of the GSTP and/or GSTT families.


Asunto(s)
Acrilamida/toxicidad , Compuestos Epoxi/toxicidad , Eliminación de Gen , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hígado/patología , Animales , Modelos Animales de Enfermedad , Femenino , Glutatión/orina , Humanos , Inactivación Metabólica , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/enzimología , Masculino , Ratones , Pruebas de Mutagenicidad
7.
Nat Med ; 25(4): 628-640, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833752

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by KRAS- and autophagy-dependent tumorigenic growth, but the role of KRAS in supporting autophagy has not been established. We show that, to our surprise, suppression of KRAS increased autophagic flux, as did pharmacological inhibition of its effector ERK MAPK. Furthermore, we demonstrate that either KRAS suppression or ERK inhibition decreased both glycolytic and mitochondrial functions. We speculated that ERK inhibition might thus enhance PDAC dependence on autophagy, in part by impairing other KRAS- or ERK-driven metabolic processes. Accordingly, we found that the autophagy inhibitor chloroquine and genetic or pharmacologic inhibition of specific autophagy regulators synergistically enhanced the ability of ERK inhibitors to mediate antitumor activity in KRAS-driven PDAC. We conclude that combinations of pharmacologic inhibitors that concurrently block both ERK MAPK and autophagic processes that are upregulated in response to ERK inhibition may be effective treatments for PDAC.


Asunto(s)
Autofagia , Cloroquina/farmacología , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
8.
Toxicol In Vitro ; 45(Pt 1): 119-127, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28867505

RESUMEN

Real-time dose-response curves for fructose have been non-invasively determined in primary rat hepatocyte alginate spheroids cultured in a NMR-compatible fluidized-bed bioreactor. Using 13C-labeled glucose and glycine culture medium, fructose dose was compared to glucose uptake and glycogen synthesis rate using 13C NMR spectroscopy, and to ATP and fructose-1-phosphate concentration using 31P NMR spectroscopy. A highly efficient multicoaxial perfusion system maintains high density 3-D hepatocyte cultures, permitting 13C and 31P NMR spectral time courses with 1min time points. The perfusion system was turned off to demonstrate its efficiency and effect on the metabolites. Within 16min, glycogen plummeted, lactate became the largest 13C-glucose metabolite via anaerobic glycolysis, while glutathione was the largest 13C-glycine metabolite. ATP depletion and fructose-1-phosphate formation demonstrated a dose response with a 3h EC50 of 19mM±8.9mM and 17.4mM±3.7mM, respectively. Computational modeling of mass transfer corroborated experimental results and helped determine the optimal bioreactor loading densities, oxygen concentration, and perfusion rates to maintain physiologically-relevant nutrient levels. The total bioreactor plus perfusion loop has a dead volume of 2ml, and contains 5 million hepatocytes. Due to the non-invasive measurements, there is a reduction of animal tissue by an order-of-magnitude, depending on the number of time points in an experiment. This dynamic flux approach may have generic utility for dose-response studies monitoring multiple metabolic reactions in other primary mammalian cells, such as human, that have strict oxygen demands.


Asunto(s)
Órganos Artificiales , Reactores Biológicos , Hepatocitos/fisiología , Hígado/fisiología , Animales , Biología Computacional , Ratas , Ratas Wistar
9.
Cancer Res ; 77(12): 3217-3230, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28515149

RESUMEN

Aerobic glycolysis supports proliferation through unresolved mechanisms. We have previously shown that aerobic glycolysis is required for the regulated proliferation of cerebellar granule neuron progenitors (CGNP) and for the growth of CGNP-derived medulloblastoma. Blocking the initiation of glycolysis via deletion of hexokinase-2 (Hk2) disrupts CGNP proliferation and restricts medulloblastoma growth. Here, we assessed whether disrupting pyruvate kinase-M (Pkm), an enzyme that acts in the terminal steps of glycolysis, would alter CGNP metabolism, proliferation, and tumorigenesis. We observed a dichotomous pattern of PKM expression, in which postmitotic neurons throughout the brain expressed the constitutively active PKM1 isoform, while neural progenitors and medulloblastomas exclusively expressed the less active PKM2. Isoform-specific Pkm2 deletion in CGNPs blocked all Pkm expression. Pkm2-deleted CGNPs showed reduced lactate production and increased SHH-driven proliferation. 13C-flux analysis showed that Pkm2 deletion reduced the flow of glucose carbons into lactate and glutamate without markedly increasing glucose-to-ribose flux. Pkm2 deletion accelerated tumor formation in medulloblastoma-prone ND2:SmoA1 mice, indicating the disrupting PKM releases CGNPs from a tumor-suppressive effect. These findings show that distal and proximal disruptions of glycolysis have opposite effects on proliferation, and that efforts to block the oncogenic effect of aerobic glycolysis must target reactions upstream of PKM. Cancer Res; 77(12); 3217-30. ©2017 AACR.


Asunto(s)
Neoplasias Cerebelosas/enzimología , Cerebelo/enzimología , Meduloblastoma/enzimología , Células-Madre Neurales/enzimología , Neurogénesis/fisiología , Piruvato Quinasa/metabolismo , Animales , Western Blotting , Proliferación Celular , Neoplasias Cerebelosas/patología , Cromatografía Liquida , Humanos , Inmunohistoquímica , Espectrometría de Masas , Meduloblastoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Células-Madre Neurales/patología , Reacción en Cadena de la Polimerasa
10.
Sci Rep ; 6: 38067, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901115

RESUMEN

Activation of p53 in response to DNA damage is essential for tumor suppression. Although previous studies have emphasized the importance of p53-dependent cell cycle arrest and apoptosis for tumor suppression, recent studies have suggested that other areas of p53 regulation, such as metabolism and DNA damage repair (DDR), are also essential for p53-dependent tumor suppression. However, the intrinsic connections between p53-mediated DDR and metabolic regulation remain incompletely understood. Here, we present data suggesting that p53 promotes nucleotide biosynthesis in response to DNA damage by repressing the expression of the phosphofructokinase-2 (PFK2) isoform 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a rate-limiting enzyme that promotes glycolysis. PFKFB3 suppression increases the flux of glucose through the pentose phosphate pathway (PPP) to increase nucleotide production, which results in more efficient DNA damage repair and increased cell survival. Interestingly, although p53-mediated suppression of PFKFB3 could increase the two major PPP products, NADPH and nucleotides, only nucleotide production was essential to promote DDR. By identifying the novel p53 target PFKFB3, we report an important mechanistic connection between p53-regulated metabolism and DDR, both of which play crucial roles in tumor suppression.


Asunto(s)
Reparación del ADN , Glucosa/metabolismo , Nucleósidos/biosíntesis , Vía de Pentosa Fosfato , Fosfofructoquinasa-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Glucosa/genética , Humanos , Nucleósidos/genética , Fosfofructoquinasa-2/genética , Proteína p53 Supresora de Tumor/genética
11.
Biomed Microdevices ; 17(1): 20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25653072

RESUMEN

Growth of the MDA-MB-231 breast cancer cell line in microfluidic channels was inhibited when culture media was delivered to the channels via microbore Tygon® tubing. Culture media incubated within this tubing also inhibited growth of these cells in conventional 96-well plates. These detrimental effects were not due to depletion of critical nutrients due to adsorption of media components onto the tubing surface. A pH change was also ruled out as a cause. Nuclear magnetic resonance spectroscopy of the cell growth media before and after incubation in the tubing confirmed no detectable loss of media components but did detect the presence of additional unidentified signals in the aliphatic region of the spectrum. These results indicate leaching of a chemical species from microbore Tygon® tubing that can affect cell growth in microfluidic devices.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Línea Celular Tumoral , Femenino , Humanos
12.
Metabolites ; 4(1): 53-70, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24958387

RESUMEN

The metabolism of 2-13C/15N-glycine and U-13C-glucose was determined in four tissue blocks (adductor muscle, stomach and digestive gland, mantle, and gills) of the Eastern oyster (Crassostrea virginica) using proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The oysters were treated in aerated seawater with three treatments (5.5 mM U-13C-glucose, 2.7 mM 2-13C/15N-glycine, and 5.5 mM U-13C-glucose plus 2.7 mM 2-13C/15N-glycine) and the relative mass balance and 13C fractional enrichments were determined in the four tissue blocks. In all tissues, glycine was metabolized by the glycine cycle forming serine exclusively in the mitochondria by the glycine cleavage system forming 2,3-13C-serine. In muscle, a minor amount of serine-derived pyruvate entered the Krebs cycle as substantiated by detection of a trace of 2,3-13C-aspartate. In all tissues, U-13C-glucose formed glycogen by glycogen synthesis, alanine by glycolysis, and glutamate and aspartate through the Krebs cycle. Alanine was formed exclusively from glucose via alanine transaminase and not glycine via alanine-glyoxylate transaminase. Based on isotopomer analysis, pyruvate carboxylase and pyruvate dehydrogenase appeared to be equal points for pyruvate entry into the Krebs cycle. In the 5.5 mM U-13C-glucose plus 2.7 mM 2-13C/15N-glycine emergence treatment used to simulate 12 h of "low tide", oysters accumulated more 13C-labeled metabolites, including both anaerobic glycolytic and aerobic Krebs cycle intermediates. The aerobic metabolites could be the biochemical result of the gaping behavior of mollusks during emergence. The change in tissue distribution and mass balance of 13C-labeled nutrients (U-13C-glucose and 2-13C/15N-glycine) provides the basis for a new quantitative fluxomic method for elucidating sub-lethal environmental effects in marine organisms called whole body mass balance phenotyping (WoMBaP).

13.
Proc Natl Acad Sci U S A ; 111(23): E2414-22, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24872453

RESUMEN

The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2(C305F)), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP-Mdm2-p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2(C305F) mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP-Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2(C305F) mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP-Mdm2-p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Carboxiliasas/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Ayuno , Hígado Graso/genética , Hígado Graso/fisiopatología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Immunoblotting , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/fisiología , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Transcriptoma/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Pérdida de Peso/genética , Pérdida de Peso/fisiología
14.
PLoS One ; 8(5): e62088, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658706

RESUMEN

Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the ΔgprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the ΔgprD has a much lower PKA activity upon starvation. Transcriptomics and (1)H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the ΔgprB and ΔgprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in ΔgprB, while in the ΔgprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the ΔgprD strain. The (1)H NMR analysis revealed significant expression of essential amino acids with elevated levels in the ΔgprD strain, compared to the wild-type and ΔgprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Redes y Vías Metabólicas , Receptores Acoplados a Proteínas G/fisiología , Aspergillus nidulans/genética , Metabolismo de los Hidratos de Carbono , Medios de Cultivo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Proteínas de Unión al GTP Heterotriméricas/fisiología , Metaboloma , Familia de Multigenes , Fenotipo , Transporte de Proteínas , Transducción de Señal , Transcriptoma
15.
Tissue Eng Part C Methods ; 19(2): 93-100, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22835003

RESUMEN

Many oxygen mass-transfer modeling studies have been performed for various bioartificial liver (BAL) encapsulation types; yet, to our knowledge, there is no experimental study that directly and noninvasively measures viability and metabolism as a function of time and oxygen concentration. We report the effect of oxygen concentration on viability and metabolism in a fluidized-bed NMR-compatible BAL using in vivo ³¹P and ¹³C NMR spectroscopy, respectively, by monitoring nucleotide triphosphate (NTP) and ¹³C-labeled nutrient metabolites, respectively. Fluidized-bed bioreactors eliminate the potential channeling that occurs with packed-bed bioreactors and serve as an ideal experimental model for homogeneous oxygen distribution. Hepatocytes were electrostatically encapsulated in alginate (avg. diameter, 500 µm; 3.5×107 cells/mL) and perfused at 3 mL/min in a 9-cm (inner diameter) cylindrical glass NMR tube. Four oxygen treatments were tested and validated by an in-line oxygen electrode: (1) 95:5 oxygen:carbon dioxide (carbogen), (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 nitrogen:oxygen:carbon dioxide, and (4) 45:50:5 nitrogen:oxygen:carbon dioxide. With 20% oxygen, ß-NTP steadily decreased until it was no longer detected at 11 h. The 35%, 50%, and 95% oxygen treatments resulted in steady ß-NTP levels throughout the 28-h experimental period. For the 50% and 95% oxygen treatment, a ¹³C NMR time course (∼5 h) revealed 2-¹³C-glycine and 2-¹³C-glucose to be incorporated into [2-¹³C-glycyl]glutathione (GSH) and 2-¹³C-lactate, respectively, with 95% having a lower rate of lactate formation. ³¹P and ¹³C NMR spectroscopy is a noninvasive method for determining viability and metabolic rates. Modifying tissue-engineered devices to be NMR compatible is a relatively easy and inexpensive process depending on the bioreactor shape.


Asunto(s)
Órganos Artificiales , Reactores Biológicos , Hígado/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Oxígeno/metabolismo , Animales , Isótopos de Carbono , Isótopos de Fósforo , Ratas , Ratas Sprague-Dawley
16.
Magn Reson Med ; 68(3): 671-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22190282

RESUMEN

The glycine cleavage system (GCS), the major pathway of glycine catabolism in liver, is found only in the mitochondria matrix and is regulated by the oxidized nicotinamide adenine dinucleotide (NAD(+) )/reduced nicotinamide adenine dinucleotide (NADH) ratio. In conjunction with serine hydroxymethyltransferase, glycine forms the 1 and 2 positions of serine, while the 3 position is formed exclusively by GCS. Therefore, we sought to exploit this pathway to show that quantitative measurements of serine isotopomers in liver can be used to monitor the NAD(+) /NADH ratio using (13) C NMR spectroscopy. Rat hepatocytes were treated with modulators of GCS activity followed by addition of 2-(13) C-glycine, and the changes in the proportions of newly synthesized serine isotopomers were compared to controls. Cysteamine, a competitive inhibitor of GCS, prevented formation of mitochondrial 3-(13) C-serine and 2,3-(13) C-serine isotopomers while reducing 2-(13) C-serine by 55%, demonstrating that ca. 20% of glycine-derived serine is produced in the cytosol. Glucagon, which activates GCS activity, and the mitochondrial uncoupler carbonyl cyanide-3-chlorophenylhydrazone both increased serine isotopomers, whereas rotenone, an inhibitor of complex I, had the opposite effect. These results demonstrate that (13) C magnetic resonance spectroscopy monitoring of the formation of serine isotopomers in isolated rat hepatocytes given 2-(13) C-glycine reflects the changes of mitochondrial redox status.


Asunto(s)
Hepatocitos/metabolismo , Mitocondrias Hepáticas/metabolismo , NAD/análisis , Oxidación-Reducción , Serina/análisis , Animales , Isótopos de Carbono , Células Cultivadas , Hepatocitos/ultraestructura , Masculino , Radiofármacos , Ratas , Ratas Sprague-Dawley
17.
Mar Drugs ; 8(10): 2578-96, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-21116407

RESUMEN

The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance ((1)H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding (1)H NMR peak assignments for future NMR-based metabolomic studies in oysters.


Asunto(s)
Crassostrea/metabolismo , Metaboloma , Metabolómica/métodos , Animales , Betaína/metabolismo , Mucosa Gástrica/metabolismo , Branquias/metabolismo , Glicina/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Mitocondrias/metabolismo , Modelos Animales , Músculos/metabolismo , Percloratos/metabolismo , Sistema Respiratorio/metabolismo , Taurina/metabolismo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...