Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Horm Behav ; 137: 105086, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808463

RESUMEN

In biparental species, in which both parents care for their offspring, the neural and endocrine mediators of paternal behavior appear to overlap substantially with those underlying maternal behavior. Little is known, however, about the roles of classical neurotransmitters, such as norepinephrine (NE), in paternal care and whether they resemble those in maternal care. We tested the hypothesis that NE facilitates the initiation of nurturant behavior toward pups in virgin male and female California mice (Peromyscus californicus), a biparental rodent. Virtually all parents in this species are attracted to familiar and unfamiliar pups, while virgins either attack, avoid, or nurture pups, suggesting that the neurochemical control of pup-related behavior changes as mice transition into parenthood. We injected virgin males and females with nepicastat, a selective dopamine ß-hydroxylase inhibitor that blocks NE synthesis (75 mg/kg, i.p.), or vehicle 2 h before exposing them to a novel pup, estrous female (males only), or pup-sized novel object for 60 min. Nepicastat significantly reduced the number of males and females that approached the pup and that displayed parental behavior. In contrast, nepicastat did not alter virgins' interactions with an estrous female or a novel object, suggesting that nepicastat-induced inhibition of interactions with pups was not mediated by changes in generalized neophobia, arousal, or activity. Nepicastat also significantly reduced NE levels in the amygdala and prefrontal cortex and increased the ratio of dopamine to NE in the hypothalamus. Our results suggest that NE may facilitate the initiation of parental behavior in male and female California mice.


Asunto(s)
Dopamina beta-Hidroxilasa , Peromyscus , Animales , Cognición , Femenino , Inhibición Psicológica , Masculino , Conducta Paterna
2.
Neuropsychopharmacology ; 46(8): 1535-1543, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33911187

RESUMEN

Both the noradrenergic and galaninergic systems have been implicated in stress-related neuropsychiatric disorders, and these two neuromodulators are co-released from the stress-responsive locus coeruleus (LC); however, the individual contributions of LC-derived norepinephrine (NE) and galanin to behavioral stress responses are unclear. Here we aimed to disentangle the functional roles of co-released NE and galanin in stress-induced behavior. We used foot shock, optogenetics, and behavioral pharmacology in wild-type (WT) mice and mice lacking either NE (Dbh-/-) or galanin (GalcKO-Dbh) specifically in noradrenergic neurons to isolate the roles of these co-transmitters in regulating anxiety-like behavior in the elevated zero maze (EZM) either immediately or 24 h following stress. Foot shock and optogenetic LC stimulation produced immediate anxiety-like behavior in WT mice, and the effects of foot shock persisted for 24 h. NE-deficient mice were resistant to the anxiogenic effects of acute stress and optogenetic LC stimulation, while mice lacking noradrenergic-derived galanin displayed typical increases in anxiety-like behavior. However, when tested 24 h after foot shock, both Dbh-/- and GalcKO-Dbh mice lacked normal expression of anxiety-like behavior. Pharmacological rescue of NE, but not galanin, in knockout mice during EZM testing was anxiogenic. In contrast, restoring galanin, but not NE, signaling during foot shock normalized stress-induced anxiety-like behavior 24 h later. These results indicate that NE and noradrenergic-derived galanin play complementary, but distinguishable roles in behavioral responses to stress. NE is required for the expression of acute stress-induced anxiety, while noradrenergic-derived galanin mediates the development of more persistent responses following a stressor.


Asunto(s)
Neuronas Adrenérgicas , Norepinefrina , Neuronas Adrenérgicas/metabolismo , Animales , Ansiedad , Galanina/genética , Galanina/metabolismo , Locus Coeruleus/metabolismo , Ratones
3.
J Neurosci ; 40(39): 7464-7474, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32868458

RESUMEN

The neuropeptide galanin has been implicated in stress-related neuropsychiatric disorders in humans and rodent models. While pharmacological treatments for these disorders are ineffective for many individuals, physical activity is beneficial for stress-related symptoms. Galanin is highly expressed in the noradrenergic system, particularly the locus coeruleus (LC), which is dysregulated in stress-related disorders and activated by exercise. Galanin expression is elevated in the LC by chronic exercise, and blockade of galanin transmission attenuates exercise-induced stress resilience. However, most research on this topic has been done in rats, so it is unclear whether the relationship between exercise and galanin is species specific. Moreover, use of intracerebroventricular (ICV) galanin receptor antagonists in prior studies precluded defining a causal role for LC-derived galanin specifically. Therefore, the goals of this study were twofold. First, we investigated whether physical activity (chronic wheel running) increases stress resilience and galanin expression in the LC of male and female mice. Next, we used transgenic mice that overexpress galanin in noradrenergic neurons (Gal OX) to determine how chronically elevated noradrenergic-derived galanin, alone, alters anxiogenic-like responses to stress. We found that three weeks of ad libitum access to a running wheel in their home cage increased galanin mRNA in the LC of mice, which was correlated with and conferred resilience to stress. The effects of exercise were phenocopied by galanin overexpression in noradrenergic neurons, and Gal OX mice were resistant to the anxiogenic effect of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.SIGNIFICANCE STATEMENT Understanding the neurobiological mechanisms underlying behavioral responses to stress is necessary to improve treatments for stress-related neuropsychiatric disorders. Increased physical activity is associated with stress resilience in humans, but the neurobiological mechanisms underlying this effect are not clear. Here, we investigate a potential causal mechanism of this effect driven by the neuropeptide galanin from the main noradrenergic nucleus, the locus coeruleus (LC). We show that chronic voluntary wheel running in mice increases stress resilience and increases galanin expression in the LC. Furthermore, we show that genetic overexpression of galanin in noradrenergic neurons causes resilience to a stressor and the anxiogenic effects of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Galanina/metabolismo , Estrés Psicológico/metabolismo , Neuronas Adrenérgicas/fisiología , Animales , Femenino , Galanina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología
4.
Psychopharmacology (Berl) ; 237(11): 3337-3355, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32821984

RESUMEN

RATIONALE: In rodents, exposure to novel environments elicits initial anxiety-like behavior (neophobia) followed by intense exploration (neophilia) that gradually subsides as the environment becomes familiar. Thus, innate novelty-induced behaviors are useful indices of anxiety and motivation in animal models of psychiatric disease. Noradrenergic neurons are activated by novelty and implicated in exploratory and anxiety-like responses, but the role of norepinephrine (NE) in neophobia has not been clearly delineated. OBJECTIVE: We sought to define the role of central NE transmission in neophilic and neophobic behaviors. METHODS: We assessed dopamine ß-hydroxylase knockout (Dbh -/-) mice lacking NE and their NE-competent (Dbh +/-) littermate controls in neophilic (novelty-induced locomotion; NIL) and neophobic (novelty-suppressed feeding; NSF) behavioral tests with subsequent quantification of brain-wide c-fos induction. We complimented the gene knockout approach with pharmacological interventions. RESULTS: Dbh -/- mice exhibited blunted locomotor responses in the NIL task and completely lacked neophobia in the NSF test. Neophobia was rescued in Dbh -/- mice by acute pharmacological restoration of central NE with the synthetic precursor L-3,4-dihydroxyphenylserine (DOPS), and attenuated in control mice by the inhibitory α2-adrenergic autoreceptor agonist guanfacine. Following either NSF or NIL, Dbh -/- mice demonstrated reduced c-fos in the anterior cingulate cortex, medial septum, ventral hippocampus, bed nucleus of the stria terminalis, and basolateral amygdala. CONCLUSION: These findings indicate that central NE signaling is required for the expression of both neophilic and neophobic behaviors. Further, we describe a putative noradrenergic novelty network as a potential therapeutic target for treating anxiety and substance abuse disorders.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Conducta Exploratoria/fisiología , Locomoción/fisiología , Red Nerviosa/metabolismo , Norepinefrina/deficiencia , Prosencéfalo/metabolismo , Agonistas Adrenérgicos/farmacología , Neuronas Adrenérgicas/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Conducta Exploratoria/efectos de los fármacos , Femenino , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/efectos de los fármacos , Norepinefrina/metabolismo , Prosencéfalo/efectos de los fármacos
5.
Psychopharmacology (Berl) ; 237(7): 1973-1987, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32313981

RESUMEN

RATIONALE: Obsessive-compulsive disorder (OCD) is characterized by repetitive behaviors exacerbated by stress. Many OCD patients do not respond to available pharmacotherapies, but neurosurgical ablation of the anterior cingulate cortex (ACC) can provide symptomatic relief. Although the ACC receives noradrenergic innervation and expresses adrenergic receptors (ARs), the involvement of norepinephrine (NE) in OCD has not been investigated. OBJECTIVE: To determine the effects of genetic or pharmacological disruption of NE neurotransmission on marble burying (MB) and nestlet shredding (NS), two animal models of OCD. METHODS: We assessed NE-deficient (Dbh -/-) mice and NE-competent (Dbh +/-) controls in MB and NS tasks. We also measured the effects of anti-adrenergic drugs on NS and MB in control mice and the effects of pharmacological restoration of central NE in Dbh -/- mice. Finally, we compared c-fos induction in the locus coeruleus (LC) and ACC of Dbh -/- and control mice following both tasks. RESULTS: Dbh -/- mice virtually lacked MB and NS behaviors seen in control mice but did not differ in the elevated zero maze (EZM) model of general anxiety-like behavior. Pharmacological restoration of central NE synthesis in Dbh -/- mice completely rescued NS behavior, while NS and MB were suppressed in control mice by anti-adrenergic drugs. Expression of c-fos in the ACC was attenuated in Dbh -/- mice after MB and NS. CONCLUSION: These findings support a role for NE transmission to the ACC in the expression of stress-induced compulsive behaviors and suggest further evaluation of anti-adrenergic drugs for OCD is warranted.


Asunto(s)
Conducta Compulsiva/metabolismo , Modelos Animales de Enfermedad , Norepinefrina/metabolismo , Trastorno Obsesivo Compulsivo/metabolismo , Estrés Psicológico/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Animales , Conducta Compulsiva/tratamiento farmacológico , Conducta Compulsiva/psicología , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Norepinefrina/antagonistas & inhibidores , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Trastorno Obsesivo Compulsivo/psicología , Receptores Adrenérgicos/metabolismo , Roedores , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/psicología
6.
Brain Struct Funct ; 225(2): 785-803, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32065256

RESUMEN

Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (GalcKO-Dbh). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of GalcKO-Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. GalcKO-Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, GalcKO-Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.


Asunto(s)
Adaptación Psicológica/fisiología , Neuronas Adrenérgicas/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Animales , Femenino , Galanina/genética , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Masculino , Ratones Noqueados , Puente/metabolismo , Corteza Prefrontal/metabolismo
7.
Front Neuroinform ; 13: 68, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736735

RESUMEN

Neurons perform computations by integrating inputs from thousands of synapses-mostly in the dendritic tree-to drive action potential firing in the axon. One fruitful approach to studying this process is to record from neurons using patch-clamp electrodes, fill the recorded neurons with a substance that allows subsequent staining, reconstruct the three-dimensional architectures of the dendrites, and use the resulting functional and structural data to develop computer models of dendritic integration. Accurately producing quantitative reconstructions of dendrites is typically a tedious process taking many hours of manual inspection and measurement. Here we present ShuTu, a new software package that facilitates accurate and efficient reconstruction of dendrites imaged using bright-field microscopy. The program operates in two steps: (1) automated identification of dendritic processes, and (2) manual correction of errors in the automated reconstruction. This approach allows neurons with complex dendritic morphologies to be reconstructed rapidly and efficiently, thus facilitating the use of computer models to study dendritic structure-function relationships and the computations performed by single neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...