RESUMEN
BACKGROUND: AZD7442 is a combination of extended half-life, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing monoclonal antibodies (tixagevimab and cilgavimab). METHODS: This phase 1, first-in-human, randomized, double-blind, placebo-controlled, dose-escalation study evaluated AZD7442 administered intramuscularly (300 mg) or intravenously (300, 1000, or 3000 mg) in healthy adults (aged 18-55 years). The primary end point was safety and tolerability. Secondary end points included pharmacokinetics and antidrug antibodies. RESULTS: Between 18 August and 16 October 2020, a total of 60 participants were enrolled; 50 received AZD7442, and 10 received placebo. Adverse events (all of mild or moderate intensity) occurred in 26 participants (52.0%) in the AZD7442 groups and 8 (80.0%) in the placebo group. No infusion or injection site or hypersensitivity reactions occurred. Tixagevimab and cilgavimab had mean half-lives of approximately 90 days (range, 87.0-95.3 days for tixagevimab and 79.8--91.1 days for cilgavimab) and similar pharmacokinetic profiles over the 361-day study period. SARS-CoV-2-specific neutralizing antibody titers provided by AZD7442 were maintained above those in plasma from convalescent patients with coronavirus disease 2019 (COVID-19). CONCLUSIONS: AZD7442 was well tolerated in healthy adults, showing a favorable safety profile across all doses. Depending on the SARS-CoV-2 variant, pharmacokinetic analyses suggest the AZD7442 could offer protection for ≥6 months against symptomatic COVID-19 after a single 300-mg intramuscular administration. CLINICAL TRIALS REGISTRATION: NCT04507256.
Antibodies are proteins produced by the body in response to infections caused by microbes, including viruses. AZD7442 is a combination of 2 human antibodies, with an extended duration of effect, sourced from people who had recovered from coronavirus disease 2019 (COVID-19). These antibodies recognize a specific part (spike protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, and prevent the virus from infecting cells in the body. The current study evaluated the safety of AZD7442 in healthy volunteers. Sixty adults were given AZD7442 or placebo (salt solution) as injections into the muscle (300-mg dose) or infusions into a vein (3003000-mg doses). The study did not find any safety issues with AZD7442, including at the highest dose. AZD7442 was measured in the blood 12 months after dosing, suggesting a long duration of protection. Following this study, AZD7442 was tested in larger clinical trials to investigate its potential in preventing and treating COVID-19. AZD7442 is currently authorized as treatment for outpatients with COVID-19 and as a preventive drug in people who may not respond well to COVID-19 vaccines and need additional protection (eg, those taking medications that dampen the immune system).
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Adulto , Semivida , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Método Doble Ciego , Anticuerpos AntiviralesRESUMEN
A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research.
RESUMEN
We test the effects of early life exposure to disease on later health by looking for differences in late-life mortality in cohorts born around the 1918-1919 flu pandemic using data from the Human Mortality Database for 24 countries. After controlling for age, period, and sex effects, residual mortality rates did not differ systematically for flu cohorts relative to surrounding cohorts. We calculate at most a 20-day reduction in life expectancy for flu cohorts; likely values are much smaller. Estimates of influenza incidence during the pandemic suggest that exposure was high enough for this to be a robust negative result.
RESUMEN
A new computer program, GlycoX, was developed to aid in the determination of the glycosylation sites and oligosaccharide heterogeneity in glycoproteins. After digestion with the nonspecific protease, each glycan at a specific glycosylation site contains a small peptide tag that identifies the location of the glycan. GlycoX was developed in MATLAB requiring the entry of the exact masses of the glycopeptide and the glycan spectra in the form of a mass-intensity table and taking advantage of the accurate mass capability of the mass analyzer, in this case a Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer. This program computes not only the glycosylation site but also the composition of the glycans at each site. Several glycoproteins were used to determine the efficacy of GlycoX. These glycoproteins range from the simple, with one site of glycosylation, to the more complex, with multiple (three) sites of glycosylation. The results obtained using the computer program were the same as those determined manually. Model glycoproteins yielded the correct results, and new glycoproteins with unknown glycosylation were examined with the site of glycosylation and the corresponding glycans determined. Furthermore, other functions in GlycoX, including an auto-isotope filter to identify monoisotopic peaks and an oligosaccharide calculator to obtain the oligosaccharide composition, are demonstrated.