Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 6: 1287863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706568

RESUMEN

There is increased emphasis on understanding cumulative risk from the combined effects of chemical and non-chemical stressors as it relates to public health. Recent animal studies have identified pulmonary inflammation as a possible modifier and risk factor for chemical toxicity in the lung after exposure to inhaled pollutants; however, little is known about specific interactions and potential mechanisms of action. In this study, primary human bronchial epithelial cells (HBEC) cultured in 3D at the air-liquid interface (ALI) are utilized as a physiologically relevant model to evaluate the effects of inflammation on toxicity of polycyclic aromatic hydrocarbons (PAHs), a class of contaminants generated from incomplete combustion of fossil fuels. Normal HBEC were differentiated in the presence of IL-13 for 14 days to induce a profibrotic phenotype similar to asthma. Fully differentiated normal and IL-13 phenotype HBEC were treated with benzo[a]pyrene (BAP; 1-40 µg/mL) or 1% DMSO/PBS vehicle at the ALI for 48 h. Cells were evaluated for cytotoxicity, barrier integrity, and transcriptional biomarkers of chemical metabolism and inflammation by quantitative PCR. Cells with the IL-13 phenotype treated with BAP result in significantly (p < 0.05) decreased barrier integrity, less than 50% compared to normal cells. The effect of BAP in the IL-13 phenotype was more apparent when evaluating transcriptional biomarkers of barrier integrity in addition to markers of mucus production, goblet cell hyperplasia, type 2 asthmatic inflammation and chemical metabolism, which all resulted in dose-dependent changes (p < 0.05) in the presence of BAP. Additionally, RNA sequencing data showed that the HBEC with the IL-13 phenotype may have increased potential for uncontrolled proliferation and decreased capacity for immune response after BAP exposure compared to normal phenotype HBEC. These data are the first to evaluate the role of combined environmental factors associated with inflammation from pre-existing disease and PAH exposure on pulmonary toxicity in a physiologically relevant human in vitro model.

2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673911

RESUMEN

One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung cells. To investigate mixture interactions and component additivity from environmentally relevant PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at the air-liquid interface were treated with PAH mixtures at environmentally relevant proportions and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component additivity was evaluated across all endpoints using two independent action (IA) models with and without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that were unlike the observed mixture response and generally underestimated the toxicity across dose suggesting the potential for non-additive interactions of components. Overall, this study provides an example of the usefulness of mixture toxicity assessment with the currently available methods while demonstrating the need for more complex yet interpretable mixture response evaluation methods for environmental samples.


Asunto(s)
Células Epiteliales , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Modelos Biológicos , Contaminantes Atmosféricos/toxicidad , Células Cultivadas , Bronquios/metabolismo , Bronquios/citología , Bronquios/efectos de los fármacos , Biomarcadores
3.
Chem Biol Interact ; 382: 110608, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37369263

RESUMEN

Current risk assessments for environmental carcinogens rely on animal studies utilizing doses orders of magnitude higher than actual human exposures. Epidemiological studies of people with high exposures (e.g., occupational) are of value, but rely on uncertain exposure data. In addition, exposures are typically not to a single chemical but to mixtures, such as polycyclic aromatic hydrocarbons (PAHs). The extremely high sensitivity of accelerator mass spectrometry (AMS) allows for dosing humans with known carcinogens with de minimus risk. In this study UPLC-AMS was used to assess the toxicokinetics of [14C]-benzo[a]pyrene ([14C]-BaP) when dosed alone or in a binary mixture with phenanthrene (Phe). Plasma was collected for 48 h following a dose of [14C]-BaP (50 ng, 5.4 nCi) or the same dose of [14C]-BaP plus Phe (1250 ng). Following the binary mixture, Cmax of [14C]-BaP significantly decreased (4.4-fold) whereas the volume of distribution (Vd) increased (2-fold). Further, the toxicokinetics of twelve [14C]-BaP metabolites provided evidence of little change in the metabolite profile of [14C]-BaP and the pattern was overall reduction consistent with reduced absorption (decrease in Cmax). Although Phe was shown to be a competitive inhibitor of the major hepatic cytochrome P-450 (CYP) responsible for metabolism of [14C]-BaP, CYP1A2, the high inhibition constant (Ki) and lack of any increase in unmetabolized [14C]-BaP in plasma makes this mechanism unlikely to be responsible. Rather, co-administration of Phe reduces the absorption of [14C]-BaP through a mechanism yet to be determined. This is the first study to provide evidence that, at actual environmental levels of exposure, the toxicokinetics of [14C]-BaP in humans is markedly altered by the presence of a second PAH, Phe, a common component of environmental PAH mixtures.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Animales , Humanos , Benzo(a)pireno/toxicidad , Toxicocinética , Fenantrenos/toxicidad , Fenantrenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Espectrometría de Masas
4.
Toxics ; 11(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36976966

RESUMEN

Passive sampling device (PSD) extracts paired with developmental toxicity assays in Danio Rerio (zebrafish) are excellent sensors for whole mixture toxicity associated with the bioavailable non-polar organics at environmental sites. We expand this concept by incorporating RNA-Seq in 48-h post fertilization zebrafish statically exposed to PSD extracts from two Portland Harbor Superfund Site locations: river mile 6.5W (RM 6.5W) and river mile 7W (RM 7W). RM 6.5W contained higher concentrations of polycyclic aromatic hydrocarbons (PAHs), but the diagnostic ratios of both extracts indicated similar PAH sourcing and composition. Developmental screens determined RM 6.5W to be more toxic with the most sensitive endpoint being a "wavy" notochord malformation. Differential gene expression from exposure to both extracts was largely parallel, although more pronounced for RM 6.5W. When compared to the gene expression associated with individual chemical exposures, PSD extracts produced some gene signatures parallel to PAHs but were more closely matched by oxygenated-PAHs. Additionally, differential expression, reminiscent of the wavy notochord phenotype, was not accounted for by either class of chemical, indicating the potential of other contaminants driving mixture toxicity. These techniques offer a compelling method for non-targeted hazard characterization of whole mixtures in an in vivo vertebrate system without requiring complete chemical characterization.

5.
Toxicol Appl Pharmacol ; 460: 116377, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642108

RESUMEN

Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.


Asunto(s)
Benzo(a)pireno , Carcinógenos , Humanos , Suplementos Dietéticos , Toxicocinética
6.
Toxics ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36355943

RESUMEN

There is a growing need to establish alternative approaches for mixture safety assessment of polycyclic aromatic hydrocarbons (PAHs). Due to limitations with current component-based approaches, and the lack of established methods for using whole mixtures, a promising alternative is to use sufficiently similar mixtures; although, an established framework is lacking. In this study, several approaches are explored to form sufficiently similar mixtures. Multiple data streams including environmental concentrations and empirically and predicted toxicity data for cancer and non-cancer endpoints were used to prioritize chemical components for mixture formations. Air samplers were analyzed for unsubstituted and alkylated PAHs. A synthetic mixture of identified PAHs was created (Creosote-Fire Mix). Existing toxicity values and chemical concentrations were incorporated to identify hazardous components in the Creosote-Fire Mix. Sufficiently similar mixtures of the Creosote-Fire Mix were formed based on (1) relative abundance; (2) toxicity values; and (3) a combination approach incorporating toxicity and abundance. Hazard characterization of these mixtures was performed using high-throughput screening in primary normal human bronchial epithelium (NHBE) and zebrafish. Differences in chemical composition and potency were observed between mixture formation approaches. The toxicity-based approach (Tox Mix) was the most potent mixture in both models. The combination approach (Weighted-Tox Mix) was determined to be the ideal approach due its ability to prioritize chemicals with high exposure and hazard potential.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35409514

RESUMEN

A 2019 retrospective study analyzed wristband personal samplers from fourteen different communities across three different continents for over 1530 organic chemicals. Investigators identified fourteen chemicals (G14) detected in over 50% of personal samplers. The G14 represent a group of chemicals that individuals are commonly exposed to, and are mainly associated with consumer products including plasticizers, fragrances, flame retardants, and pesticides. The high frequency of exposure to these chemicals raises questions of their potential adverse human health effects. Additionally, the possibility of exposure to mixtures of these chemicals is likely due to their co-occurrence; thus, the potential for mixtures to induce differential bioactivity warrants further investigation. This study describes a novel approach to broadly evaluate the hazards of personal chemical exposures by coupling data from personal sampling devices with high-throughput bioactivity screenings using in vitro and non-mammalian in vivo models. To account for species and sensitivity differences, screening was conducted using primary normal human bronchial epithelial (NHBE) cells and early life-stage zebrafish. Mixtures of the G14 and most potent G14 chemicals were created to assess potential mixture effects. Chemical bioactivity was dependent on the model system, with five and eleven chemicals deemed bioactive in NHBE and zebrafish, respectively, supporting the use of a multi-system approach for bioactivity testing and highlighting sensitivity differences between the models. In both NHBE and zebrafish, mixture effects were observed when screening mixtures of the most potent chemicals. Observations of BMC-based mixtures in NHBE (NHBE BMC Mix) and zebrafish (ZF BMC Mix) suggested antagonistic effects. In this study, consumer product-related chemicals were prioritized for bioactivity screening using personal exposure data. High-throughput high-content screening was utilized to assess the chemical bioactivity and mixture effects of the most potent chemicals.


Asunto(s)
Retardadores de Llama , Plaguicidas , Animales , Retardadores de Llama/toxicidad , Compuestos Orgánicos , Estudios Retrospectivos , Pez Cebra
8.
Environ Int ; 159: 107045, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34920278

RESUMEN

Benzo[a]pyrene (BaP) is formed by incomplete combustion of organic materials (petroleum, coal, tobacco, etc.). BaP is designated by the International Agency for Research on Cancer as a group 1 known human carcinogen; a classification supported by numerous studies in preclinical models and epidemiology studies of exposed populations. Risk assessment relies on toxicokinetic and cancer studies in rodents at doses 5-6 orders of magnitude greater than average human uptake. Using a dose-response design at environmentally relevant concentrations, this study follows uptake, metabolism, and elimination of [14C]-BaP in human plasma by employing UPLC - accelerator mass spectrometry (UPLC-AMS). Volunteers were administered 25, 50, 100, and 250 ng (2.7-27 nCi) of [14C]-BaP (with interceding minimum 3-week washout periods) with quantification of parent [14C]-BaP and metabolites in plasma measured over 48 h. [14C]-BaP median Tmax was 30 min with Cmax and area under the curve (AUC) approximating dose-dependency. Marked inter-individual variability in plasma pharmacokinetics following a 250 ng dose was seen with 7 volunteers as measured by the Cmax (8.99 ± 7.08 ng × mL-1) and AUC0-48hr (68.6 ± 64.0 fg × hr-1 × mL-1). Approximately 3-6% of the [14C] recovered (AUC0-48 hr) was parent compound, demonstrating extensive metabolism following oral dosing. Metabolite profiles showed that, even at the earliest time-point (30 min), a substantial percentage of [14C] in plasma was polar BaP metabolites. The best fit modeling approach identified non-compartmental apparent volume of distribution of BaP as significantly increasing as a function of dose (p = 0.004). Bay region tetrols and dihydrodiols predominated, suggesting not only was there extensive first pass metabolism but also potentially bioactivation. AMS enables the study of environmental carcinogens in humans with de minimus risk, allowing for important testing and validation of physiologically based pharmacokinetic models derived from animal data, risk assessment, and the interpretation of data from high-risk occupationally exposed populations.


Asunto(s)
Benzo(a)pireno , Carcinógenos , Animales , Benzo(a)pireno/farmacocinética , Humanos , Espectrometría de Masas , Medición de Riesgo
9.
Drug Metab Dispos ; 49(8): 694-705, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34035125

RESUMEN

3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.


Asunto(s)
Indoles , Administración Oral , Anticarcinógenos/sangre , Anticarcinógenos/farmacocinética , Anticarcinógenos/orina , Cápsulas , Suplementos Dietéticos , Desarrollo de Medicamentos , Vías de Eliminación de Fármacos , Femenino , Humanos , Inactivación Metabólica/fisiología , Indoles/sangre , Indoles/farmacocinética , Indoles/orina , Masculino , Persona de Mediana Edad , Fitoquímicos/sangre , Fitoquímicos/farmacocinética , Fitoquímicos/orina
10.
Chem Res Toxicol ; 34(6): 1445-1455, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34048650

RESUMEN

Exposure to polycyclic aromatic hydrocarbons (PAHs) often occurs as complex chemical mixtures, which are linked to numerous adverse health outcomes in humans, with cancer as the greatest concern. The cancer risk associated with PAH exposures is commonly evaluated using the relative potency factor (RPF) approach, which estimates PAH mixture carcinogenic potential based on the sum of relative potency estimates of individual PAHs, compared to benzo[a]pyrene (BAP), a reference carcinogen. The present study evaluates molecular mechanisms related to PAH cancer risk through integration of transcriptomic and bioinformatic approaches in a 3D human bronchial epithelial cell model. Genes with significant differential expression from human bronchial epithelium exposed to PAHs were analyzed using a weighted gene coexpression network analysis (WGCNA) two-tiered approach: first to identify gene sets comodulated to RPF and second to link genes to a more comprehensive list of regulatory values, including inhalation-specific risk values. Over 3000 genes associated with processes of cell cycle regulation, inflammation, DNA damage, and cell adhesion processes were found to be comodulated with increasing RPF with pathways for cell cycle S phase and cytoskeleton actin identified as the most significantly enriched biological networks correlated to RPF. In addition, comodulated genes were linked to additional cancer-relevant risk values, including inhalation unit risks, oral cancer slope factors, and cancer hazard classifications from the World Health Organization's International Agency for Research on Cancer (IARC). These gene sets represent potential biomarkers that could be used to evaluate cancer risk associated with PAH mixtures. Among the values tested, RPF values and IARC categorizations shared the most similar responses in positively and negatively correlated gene modules. Together, we demonstrated a novel manner of integrating gene sets with chemical toxicity equivalence estimates through WGCNA to understand potential mechanisms.


Asunto(s)
Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Redes Reguladoras de Genes , Neoplasias/inducido químicamente , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Células Cultivadas , Humanos , Neoplasias/genética
11.
Toxicol In Vitro ; 69: 104991, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32890658

RESUMEN

One of the most difficult challenges for risk assessment is evaluation of chemicals that predominately co-occur in mixtures like polycyclic aromatic hydrocarbons (PAHs). We previously developed a classification model in which systems biology data collected from mice short-term after chemical exposure accurately predict tumor outcome. The present study demonstrates translation of this approach into a human in vitro model in which chemical-specific bioactivity profiles from 3D human bronchial epithelial cells (HBEC) classify PAHs by carcinogenic potency. Gene expression profiles were analyzed from HBEC exposed to carcinogenic and non-carcinogenic PAHs and classification accuracies were identified for individual pathway-based gene sets. Posterior probabilities of best performing gene sets were combined via Bayesian integration resulting in a classifier with four gene sets, including aryl hydrocarbon receptor signaling, regulation of epithelial mesenchymal transition, regulation of angiogenesis, and cell cycle G2-M. In addition, transcriptional benchmark dose modeling of benzo[a]pyrene (BAP) showed that the most sensitive gene sets to BAP regulation were largely dissimilar from those that best classified PAH carcinogenicity challenging current assumptions that BAP carcinogenicity (and subsequent mode of action) is reflective of overall PAH carcinogenicity. These results illustrate utility of using systems toxicology approaches to analyze global gene expression towards carcinogenic hazard assessment.


Asunto(s)
Carcinógenos/clasificación , Carcinógenos/toxicidad , Células Epiteliales/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/clasificación , Hidrocarburos Policíclicos Aromáticos/toxicidad , Bronquios/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Medición de Riesgo , Biología de Sistemas , Transcriptoma/efectos de los fármacos
12.
Toxicol Sci ; 176(1): 46-64, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384158

RESUMEN

The aryl hydrocarbon receptor (AHR) mediates developmental toxicity of several xenobiotic classes including polycyclic aromatic hydrocarbons. Using embryonic zebrafish, we previously identified 4 polycyclic aromatic hydrocarbons that caused a novel phenotype among AHR ligands-growth of a lateral, duplicate caudal fin fold. The window of sensitivity to the most potent inducer of this phenotype, benzo[k]fluoranthene (BkF), was prior to 36 h postfertilization (hpf), although the phenotype was not manifest until 60 hpf. AHR dependency via Ahr2 was demonstrated using morpholino knockdown. Hepatocyte ablation demonstrated that hepatic metabolism of BkF was not required for the phenotype, nor was it responsible for the window of sensitivity. RNA sequencing performed on caudal trunk tissue from BkF-exposed animals collected at 48, 60, 72, and 96 hpf showed upregulation of genes associated with AHR activation, appendage development, and tissue patterning. Genes encoding fibroblast growth factor and bone morphogenic protein ligands, along with retinaldehyde dehydrogenase, were prominently upregulated. Gene Ontology term analysis revealed that upregulated genes were enriched for mesoderm development and fin regeneration, whereas downregulated genes were enriched for Wnt signaling and neuronal development. MetaCore (Clarivate Analytics) systems analysis of orthologous human genes predicted that R-SMADs, AP-1, and LEF1 regulated the expression of an enriched number of gene targets across all time points. Our results demonstrate a novel aspect of AHR activity with implications for developmental processes conserved across vertebrate species.


Asunto(s)
Fluorenos/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Contaminantes Químicos del Agua/toxicidad , Proteínas de Pez Cebra/metabolismo , Animales , Embrión no Mamífero , Larva , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pez Cebra
13.
Toxicol Appl Pharmacol ; 379: 114644, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31255691

RESUMEN

Current assumption for assessing carcinogenic risk of polycyclic aromatic hydrocarbons (PAHs) is that they function through a common mechanism of action; however, recent studies demonstrate that PAHs can act through unique mechanisms potentially contributing to cancer outcomes in a non-additive manner. Using a primary human 3D bronchial epithelial culture (HBEC) model, we assessed potential differences in mechanism of toxicity for two PAHs, benzo[a]pyrene (BAP) and dibenzo[def,p]chrysene (DBC), compared to a complex PAH mixture based on short-term biosignatures identified from transcriptional profiling. Differentiated bronchial epithelial cells were treated with BAP (100-500 µg/ml), DBC (10 µg/ml), and coal tar extract (CTE 500-1500 µg/ml, SRM1597a) for 48 h and gene expression was measured by RNA sequencing or quantitative PCR. Comparison of BAP and DBC gene signatures showed that the majority of genes (~60%) were uniquely regulated by treatment, including signaling pathways for inflammation and DNA damage by DBC and processes for cell cycle, hypoxia and oxidative stress by BAP. Specifically, BAP upregulated targets of AhR, NRF2, and KLF4, while DBC downregulated these same targets, suggesting a chemical-specific pattern in transcriptional regulation involved in antioxidant response, potentially contributing to differences in PAH potency. Other processes were regulated in common by all PAH treatments, BAP, DBC and CTE, including downregulation of genes involved in cell adhesion and reduced functional measurements of barrier integrity. This work supports prior in vivo studies and demonstrates the utility of profiling short-term biosignatures in an organotypic 3D model to identify mechanisms linked to carcinogenic risk of PAHs in humans.


Asunto(s)
Benzopirenos/toxicidad , Bronquios/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Benzo(a)pireno , Bronquios/citología , Bronquios/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Humanos , Factor 4 Similar a Kruppel , L-Lactato Deshidrogenasa/metabolismo , Mucosa Respiratoria/metabolismo , Análisis de Secuencia de ARN , Pruebas de Toxicidad/métodos , Transcriptoma
14.
BMC Bioinformatics ; 20(1): 255, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101000

RESUMEN

BACKGROUND: The Bioinformatics Resource Manager (BRM) is a web-based tool developed to facilitate identifier conversion and data integration for Homo sapiens (human), Mus musculus (mouse), Rattus norvegicus (rat), Danio rerio (zebrafish), and Macaca mulatta (macaque), as well as perform orthologous conversions among the supported species. In addition to providing a robust means of identifier conversion, BRM also incorporates a suite of microRNA (miRNA)-target databases upon which to query target genes or to perform reverse target lookups using gene identifiers. RESULTS: BRM has the capability to perform cross-species identifier lookups across common identifier types, directly integrate datasets across platform or species by performing identifier retrievals in the background, and retrieve miRNA targets from multiple databases simultaneously and integrate the resulting gene targets with experimental mRNA data. Here we use workflows provided in BRM to integrate RNA sequencing data across species to identify common biomarkers of exposure after treatment of human lung cells and zebrafish to benzo[a]pyrene (BAP). We further use the miRNA Target workflow to experimentally determine the role of miRNAs as regulators of BAP toxicity and identify the predicted functional consequences of miRNA-target regulation in our system. The output from BRM can easily and directly be uploaded to freely available visualization tools for further analysis. From these examples, we were able to identify an important role for several miRNAs as potential regulators of BAP toxicity in human lung cells associated with cell migration, cell communication, cell junction assembly and regulation of cell death. CONCLUSIONS: Overall, BRM provides bioinformatics tools to assist biologists having minimal programming skills with analysis and integration of high-content omics' data from various transcriptomic and proteomic platforms. BRM workflows were developed in Java and other open-source technologies and are served publicly using Apache Tomcat at https://cbb.pnnl.gov/brm/ .


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Internet , MicroARNs/genética , Biología de Sistemas/métodos , Animales , Secuencia de Bases , Humanos , Macaca mulatta , Ratones , MicroARNs/metabolismo , Proteómica , ARN Mensajero/genética , Ratas , Motor de Búsqueda , Análisis de Secuencia de ARN , Especificidad de la Especie , Pez Cebra/genética
15.
Toxicol Appl Pharmacol ; 364: 97-105, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30582946

RESUMEN

Benzo[a]pyrene (BaP), is a known human carcinogen (International Agency for Research on Cancer (IARC) class 1). The remarkable sensitivity (zepto-attomole 14C in biological samples) of accelerator mass spectrometry (AMS) makes possible, with de minimus risk, pharmacokinetic (PK) analysis following [14C]-BaP micro-dosing of humans. A 46 ng (5 nCi) dose was given thrice to 5 volunteers with minimum 2 weeks between dosing and plasma collected over 72 h. [14C]-BaPeq PK analysis gave plasma Tmax and Cmax values of 1.25 h and 29-82 fg/mL, respectively. PK parameters were assessed by non- compartment and compartment models. Intervals between dosing ranged from 20 to 420 days and had little impact on intra-individual variation. DNA, extracted from peripheral blood mononuclear cells (PBMCs) of 4 volunteers, showed measurable levels (LOD ~ 0.5 adducts/1011 nucleotides) in two individuals 2-3 h post-dose, approximately three orders of magnitude lower than smokers or occupationally-exposed individuals. Little or no DNA binding was detectable at 48-72 h. In volunteers the allelic variants CYP1B1*1/*⁎1, *1/*3 or *3/*3 and GSTM1*0/0 or *1 had no impact on [14C]-BaPeq PK or DNA adduction with this very limited sample. Plasma metabolites over 72 h from two individuals (one CYP1B1*1/*1 and one CYP1B1*3/*3) were analyzed by UPLC-AMS. In both individuals, parent [14C]-BaP was a minor constituent even at the earliest time points and metabolite profiles markedly distinct. AMS, coupled with UPLC, could be used in humans to enhance the accuracy of pharmacokinetics, toxicokinetics and risk assessment of environmental carcinogens.


Asunto(s)
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Cromatografía Liquida/métodos , Espectrometría de Masas , Administración Oral , Adulto , Anciano , Benzo(a)pireno/administración & dosificación , Benzo(a)pireno/efectos adversos , Carcinógenos/administración & dosificación , Carcinógenos/toxicidad , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Aductos de ADN/metabolismo , Femenino , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Variantes Farmacogenómicas , Medición de Riesgo , Adulto Joven
16.
Environ Health Perspect ; 126(11): 117002, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30398377

RESUMEN

BACKGROUND: A structurally diverse group of chemicals, including dioxins [e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and polycyclic aromatic hydrocarbons (PAHs), can xenobiotically activate the aryl hydrocarbon receptor (AHR) and contribute to adverse health effects in humans and wildlife. In the zebrafish model, repression of sox9b has a causal role in several AHR-mediated toxic responses, including craniofacial cartilage malformations; however, the mechanism of sox9b repression remains unknown. We previously identified a long noncoding RNA, sox9b long intergenic noncoding RNA (slincR), which is increased (in an AHR-dependent manner) by multiple AHR ligands and is required for the AHR-activated repression of sox9b. OBJECTIVE: Using the zebrafish model, we aimed to enhance our understanding of the signaling events downstream of AHR activation that contribute to toxic responses by identifying: a) whether slincR is enriched on the sox9b locus, b) slincR's functional contributions to TCDD-induced toxicity, c) PAHs that increase slincR expression, and d) mammalian orthologs of slincR. METHODS: We used capture hybridization analysis of RNA targets (CHART), qRT-PCR, RNA sequencing, morphometric analysis of cartilage structures, and hemorrhaging screens. RESULTS: The slincR transcript was enriched at the 5' untranslated region (UTR) of the sox9b locus. Transcriptome profiling and human ortholog analyses identified processes related to skeletal and cartilage development unique to TCDD-exposed controls, and angiogenesis and vasculature development unique to TCDD-exposed zebrafish that were injected with a splice-blocking morpholino targeting slincR. In comparison to TCDD exposed control morphants, slincR morphants exposed to TCDD resulted in abnormal cartilage structures and a smaller percentage of animals displaying the hemorrhaging phenotype. In addition, slincR expression was significantly increased in six out of the sixteen PAHs we screened. CONCLUSION: Our study establishes that in zebrafish, slincR is recruited to the sox9b 5' UTR to repress transcription, can regulate cartilage development, has a causal role in the TCDD-induced hemorrhaging phenotype, and is up-regulated by multiple environmentally relevant PAHs. These findings have important implications for understanding the ligand-specific mechanisms of AHR-mediated toxicity. https://doi.org/10.1289/EHP3281.


Asunto(s)
ARN Largo no Codificante/fisiología , Receptores de Hidrocarburo de Aril/fisiología , Factor de Transcripción SOX9/biosíntesis , Animales , Cartílago/anomalías , Cartílago/efectos de los fármacos , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Humanos , Dibenzodioxinas Policloradas/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , ARN Largo no Codificante/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
17.
Food Chem Toxicol ; 115: 136-147, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29518434

RESUMEN

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is a known human carcinogen. In non-smoking adults greater than 95% of BaP exposure is through diet. The carcinogenicity of BaP is utilized by the U.S. EPA to assess relative potency of complex PAH mixtures. PAH relative potency factors (RPFs, BaP = 1) are determined from high dose animal data. We employed accelerator mass spectrometry (AMS) to determine pharmacokinetics of [14C]-BaP in humans following dosing with 46 ng (an order of magnitude lower than human dietary daily exposure and million-fold lower than animal cancer models). To assess the impact of co-administration of food with a complex PAH mixture, humans were dosed with 46 ng of [14C]-BaP with or without smoked salmon. Subjects were asked to avoid high BaP-containing diets and a 3-day dietary questionnaire given to assess dietary exposure prior to dosing and three days post-dosing with [14C]-BaP. Co-administration of smoked salmon, containing a complex mixture of PAHs with an RPF of 460 ng BaPeq, reduced and delayed absorption. Administration of canned commercial salmon, containing very low amounts of PAHs, showed the impacts on pharmacokinetics were not due to high amounts of PAHs but rather a food matrix effect.


Asunto(s)
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Productos Pesqueros/análisis , Salmón/metabolismo , Adulto , Anciano , Animales , Benzo(a)pireno/metabolismo , Radioisótopos de Carbono/análisis , Carcinógenos/metabolismo , Culinaria , Femenino , Productos Pesqueros/efectos adversos , Inocuidad de los Alimentos , Humanos , Masculino , Persona de Mediana Edad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Adulto Joven
18.
Cancer Inform ; 16: 1176935117740132, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29162974

RESUMEN

The mechanistic basis by which the level of p27Kip1 expression influences tumor aggressiveness and patient mortality remains unclear. To elucidate the competing tumor-suppressing and oncogenic effects of p27Kip1 on gene expression in tumors, we analyzed the transcriptomes of squamous cell papilloma derived from Cdkn1b nullizygous, heterozygous, and wild-type mice. We developed a novel functional pathway analysis method capable of testing directional and nonmonotonic dose response. This analysis can reveal potential causal relationships that might have been missed by other nondirectional pathway analysis methods. Applying this method to capture dose-response curves in papilloma gene expression data, we show that several known cancer pathways are dominated by low-high-low gene expression responses to increasing p27 gene doses. The oncogene cyclin D1, whose expression is elevated at an intermediate p27 dose, is the most responsive gene shared by these cancer pathways. Therefore, intermediate levels of p27 may promote cellular processes favoring tumorigenesis-strikingly consistent with the dominance of heterozygous mutations in CDKN1B seen in human cancers. Our findings shed new light on regulatory mechanisms for both pro- and anti-tumorigenic roles of p27Kip1. Functional pathway dose-response analysis provides a unique opportunity to uncover nonmonotonic patterns in biological systems.

19.
Ecotoxicol Environ Saf ; 142: 157-163, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28407501

RESUMEN

We previously observed that exposure to a complex mixture of high molecular weight polycyclic aromatic hydrocarbons (PAHs) increased sensitivity of rainbow trout (Oncorhynchus mykiss) to subsequent challenge with Aeromonas salmonicida, the causative agent of furunculosis. In this study, we evaluate potential mechanisms associated with disease susceptibility from combined environmental factors of dietary PAH exposure and pathogen challenge. Rainbow trout were fed a mixture of ten high molecular weight PAHs at an environmentally relevant concentration (7.82µg PAH mixture/g fish/day) or control diet for 50 days. After 50 days of PAH exposure, fish were challenged with either Aeromonas salmonicida at a lethal concentration 30 (LC30) or growth media without the pathogen (mock challenge). Head kidneys were collected 2, 4, 10 and 20 days after challenge and gene expression (q<0.05) was evaluated among treatments. In animals fed the PAH contaminated diet, we observed down-regulation of expression for innate immune system genes in pathways (p<0.05) for the terminal steps of the complement cascade (complement component C6) and other bacteriolytic processes (lysozyme type II) potentially underlying increased disease susceptibility after pathogen challenge. Increased expression of genes associated with hemorrhage/tissue remodeling/inflammation pathways (p<0.05) was likely related to more severe head kidney damage due to infection in PAH-fed compared to control-fed fish. This study is the first to evaluate transcriptional signatures associated with the impact of chronic exposure to an environmentally relevant mixture of PAHs in disease susceptibility and immunity.


Asunto(s)
Aeromonas salmonicida/patogenicidad , Riñón Cefálico/inmunología , Inmunidad Innata/efectos de los fármacos , Oncorhynchus mykiss/microbiología , Hidrocarburos Policíclicos Aromáticos/toxicidad , Transcripción Genética/efectos de los fármacos , Animales , Regulación hacia Abajo , Inmunidad Innata/genética , Muramidasa/metabolismo , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/metabolismo
20.
Radiat Res ; 186(5): 531-538, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27802111

RESUMEN

In this study we utilized a systems biology approach to identify dose- (0.1, 2.0 and 10 Gy) and time- (3 and 8 h) dependent responses to acute ionizing radiation exposure in a complex tissue, reconstituted human skin. The low dose used here (0.1 Gy) falls within the range of certain medical diagnostic procedures. Of the two higher doses used, 2.0 Gy is typically administered for radiotherapy, while 10 Gy is lethal. Because exposure to any of these doses is possible after an intentional or accidental radiation events, biomarkers are needed to rapidly and accurately triage potentially exposed individuals. Here, tissue samples were acutely exposed to X-ray-generated low-linear-energy transfer (LET) ionizing radiation, and direct RNA sequencing (RNA-seq) was used to quantify altered transcripts. The time points used for this study aid in assessing early responses to exposure, when key signaling pathways and biomarkers can be identified, which precede and regulate later phenotypic alterations that occur at high doses, including cell death. We determined that a total of 1,701 genes expressed were significantly affected by high-dose radiation, with the majority of genes affected at 10 Gy. Expression levels of a group of 29 genes, including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA and AEN, were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at both time points. A much larger group of upregulated genes, including those involved in inflammatory responses, was significantly altered only after 10 Gy irradiation. At high doses, downregulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a few genes were significantly affected by 0.1 Gy irradiation, using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to high-dose irradiated groups. Differential regulation of PLK1 signaling at low- and high-dose irradiation was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of ionizing radiation in this model system. They also highlight potential biomarkers for radiation exposure that may precede the development of overt physiological symptoms in exposed individuals.


Asunto(s)
Perfilación de la Expresión Génica , Transferencia Lineal de Energía , Piel/metabolismo , Piel/efectos de la radiación , Biomarcadores/metabolismo , Relación Dosis-Respuesta en la Radiación , Humanos , Factores de Tiempo , Rayos X/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...