Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034714

RESUMEN

The mycobacterial mutasome - minimally comprising ImuA', ImuB, and DnaE2 proteins - has been implicated in DNA damage-induced mutagenesis in Mycobacterium tuberculosis. ImuB, predicted to enable mutasome function via its interaction with the ß clamp, is a catalytically inactive member of the Y-family of DNA polymerases. Like other members of the Y family, ImuB features a recently identified amino acid motif with homology to the RecA-N-terminus (RecA-NT). In RecA, the motif mediates oligomerization of RecA monomers into RecA filaments. Given the role of ImuB in the mycobacterial mutasome, we hypothesized that the ImuB RecA-NT motif might mediate its interaction with ImuA', a RecA homolog of unknown function. To investigate this possibility, we constructed a panel of imuB alleles in which RecA-NT was removed, or mutated. Results from microbiological and biochemical assays indicate that RecA-NT is critical for the interaction of ImuB with ImuA'. A region downstream of RecA-NT (ImuB-C) also appears to stabilize the ImuB-ImuA' interaction, but its removal does not prevent complex formation. In contrast, replacing two key hydrophobic residues of RecA-NT, L378 and V383, is sufficient to disrupt ImuA'-ImuB interaction. To our knowledge, this constitutes the first experimental evidence showing the role of the RecA-NT motif in mediating the interaction between a Y-family member and a RecA homolog.

2.
Nat Microbiol ; 7(11): 1857-1869, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36192537

RESUMEN

Argonaute (Ago) proteins are found in all three domains of life. The so-called long Agos are composed of four major domains (N, PAZ, MID and PIWI) and contribute to RNA silencing in eukaryotes (eAgos) or defence against invading mobile genetic elements in prokaryotes (pAgos). The majority (~60%) of pAgos identified bioinformatically are shorter (comprising only MID and PIWI domains) and are typically associated with Sir2, Mrr or TIR domain-containing proteins. The cellular function and mechanism of short pAgos remain enigmatic. Here we show that Geobacter sulfurreducens short pAgo and the NAD+-bound Sir2 protein form a stable heterodimeric complex. The GsSir2/Ago complex presumably recognizes invading plasmid or phage DNA and activates the Sir2 subunit, which triggers endogenous NAD+ depletion and cell death, and prevents the propagation of invading DNA. We reconstituted NAD+ depletion activity in vitro and showed that activated GsSir2/Ago complex functions as a NADase that hydrolyses NAD+ to ADPR. Thus, short Sir2-associated pAgos provide defence against phages and plasmids, underscoring the diversity of mechanisms of prokaryotic Agos.


Asunto(s)
Bacteriófagos , NAD , NAD/genética , NAD/metabolismo , Células Procariotas/metabolismo , Proteínas Argonautas/genética , ADN/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Secuencias Repetitivas Esparcidas
3.
Clin Endocrinol (Oxf) ; 94(4): 656-666, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33296094

RESUMEN

OBJECTIVE: The study aimed to identify the genetic basis of partial gonadal dysgenesis (PGD) in a non-consanguineous family from Estonia. PATIENTS: Cousins P (proband) 1 (12 years; 46,XY) and P2 (18 years; 46,XY) presented bilateral cryptorchidism, severe penoscrotal hypospadias, low bitesticular volume and azoospermia in P2. Their distant relative, P3 (30 years; 46,XY), presented bilateral cryptorchidism and cryptozoospermia. DESIGN: Exome sequencing was targeted to P1-P3 and five unaffected family members. RESULTS: P1-P2 were identified as heterozygous carriers of NR5A1 c.991-1G > C. NR5A1 encodes the steroidogenic factor-1 essential in gonadal development and specifically expressed in adrenal, spleen, pituitary and testes. Together with a previous PGD case from Belgium (Robevska et al 2018), c.991-1G > C represents the first recurrent NR5A1 splice-site mutation identified in patients. The majority of previous reports on NR5A1 mutation carriers have not included phenotype-genotype data of the family members. Segregation analysis across three generations showed incomplete penetrance (<50%) and phenotypic variability among the carriers of NR5A1 c.991-1G > C. The variant pathogenicity was possibly modulated by rare heterozygous variants inherited from the other parent, OTX2 p.P134R (P1) or PROP1 c.301_302delAG (P2). For P3, the pedigree structure supported a distinct genetic cause. He carries a previously undescribed likely pathogenic variant SOS1 p.Y136H. SOS1, critical in Ras/MAPK signalling and foetal development, is a strong novel candidate gene for cryptorchidism. CONCLUSIONS: Detailed genetic profiling facilitates counselling and clinical management of the probands, and supports unaffected mutation carriers in the family for their reproductive decision making.


Asunto(s)
Disgenesia Gonadal 46 XY , Penetrancia , Factor Esteroidogénico 1 , Variación Biológica Poblacional , Disgenesia Gonadal 46 XY/genética , Humanos , Masculino , Mutación , Factor Esteroidogénico 1/genética , Testículo
4.
Nucleic Acids Res ; 47(9): 4393-4405, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916324

RESUMEN

Bacterial Y-family DNA polymerases are usually classified into DinB (Pol IV), UmuC (the catalytic subunit of Pol V) and ImuB, a catalytically dead essential component of the ImuA-ImuB-DnaE2 mutasome. However, the true diversity of Y-family polymerases is unknown. Furthermore, for most of them the structures are unavailable and interactions are poorly characterized. To gain a better understanding of bacterial Y-family DNA polymerases, we performed a detailed computational study. It revealed substantial diversity, far exceeding traditional classification. We found that a large number of subfamilies feature a C-terminal extension next to the common Y-family region. Unexpectedly, in most C-terminal extensions we identified a region homologous to the N-terminal oligomerization motif of RecA. This finding implies a universal mode of interaction between Y-family members and RecA (or ImuA), in the case of Pol V strongly supported by experimental data. In gram-positive bacteria, we identified a putative Pol V counterpart composed of a Y-family polymerase, a YolD homolog and RecA. We also found ImuA-ImuB-DnaE2 variants lacking ImuA, but retaining active or inactive Y-family polymerase, a standalone ImuB C-terminal domain and/or DnaE2. In summary, our analyses revealed that, despite considerable diversity, bacterial Y-family polymerases share previously unanticipated similarities in their structural domains/motifs and interactions.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Escherichia coli/genética , Conformación Proteica , Rec A Recombinasas/genética , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Biología Computacional , Citoesqueleto/química , Citoesqueleto/genética , ADN Polimerasa III/química , ADN Polimerasa III/genética , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Moleculares , Rec A Recombinasas/química
5.
Nucleic Acids Res ; 42(3): 1393-413, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24106089

RESUMEN

The analysis of ∼ 2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an 'impaired' version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , ADN Polimerasa III/química , Secuencias de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , ADN Polimerasa III/clasificación , ADN Polimerasa III/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Genoma Bacteriano , Filogenia , Estructura Terciaria de Proteína , Electricidad Estática
6.
FEBS J ; 278(17): 3109-18, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21740522

RESUMEN

PolC is one of two essential replicative DNA polymerases in Bacillus subtilis and other Gram-positive bacteria. The 3D structure of PolC has recently been solved, yet it lacks the N-terminal region. For this PolC region of ∼ 230 residues, both the structure and function are unknown. In the present study, using sensitive homology detection and comparative protein structure modeling, we identified, in this enigmatic region, two consecutive globular domains, PolC-NI and PolC-NII, which are followed by an apparently unstructured linker. Unexpectedly, we found that both domains are related to domain V of the τ subunit, which is part of the bacterial DNA polymerase III holoenzyme. Despite their common homology to τ, PolC-NI and PolC-NII exhibit very little sequence similarity to each other. This observation argues against simple tandem duplication within PolC as the origin of the two-domain structure. Using the derived structural models, we analyzed residue conservation and the surface properties of both PolC N-terminal domains. We detected a surface patch of positive electrostatic potential in PolC-NI and a hydrophobic surface patch in PolC-NII, suggesting their possible involvement in nucleic acid and protein binding, respectively. PolC is known to interact with the τ subunit, however, the region responsible for this interaction is unknown. We propose that the PolC N-terminus is involved in mediating the PolC-τ interaction and possibly also in binding DNA.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , ADN Polimerasa III/química , ADN Polimerasa Dirigida por ADN/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Secuencia Conservada , Bases de Datos Factuales , Bases de Datos de Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...