Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 11(1): 6332, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737578

RESUMEN

Juvenile CLN3 disease is a recessively inherited paediatric neurodegenerative disorder, with most patients homozygous for a 1-kb intragenic deletion in CLN3. The btn1 gene is the Schizosaccharomyces pombe orthologue of CLN3. Here, we have extended the use of synthetic genetic array (SGA) analyses to delineate functional signatures for two different disease-causing mutations in addition to complete deletion of btn1. We show that genetic-interaction signatures can differ for mutations in the same gene, which helps to dissect their distinct functional effects. The mutation equivalent to the minor transcript arising from the 1-kb deletion (btn1102-208del) shows a distinct interaction pattern. Taken together, our results imply that the minor 1-kb deletion transcript has three consequences for CLN3: to both lose and retain some inherent functions and to acquire abnormal characteristics. This has particular implications for the therapeutic development of juvenile CLN3 disease. In addition, this proof of concept could be applied to conserved genes for other mendelian disorders or any gene of interest, aiding in the dissection of their functional domains, unpacking the global consequences of disease pathogenesis, and clarifying genotype-phenotype correlations. In doing so, this detail will enhance the goals of personalised medicine to improve treatment outcomes and reduce adverse events.


Asunto(s)
Eliminación de Gen , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/genética , Proteínas de Schizosaccharomyces pombe/genética , Estudios de Asociación Genética , Homocigoto , Humanos , Modelos Genéticos , Mutación/genética , Lipofuscinosis Ceroideas Neuronales/patología , Schizosaccharomyces/genética
3.
Hum Mol Genet ; 29(8): 1253-1273, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32129442

RESUMEN

Some mutations affecting dynamin 2 (DNM2) can cause dominantly inherited Charcot-Marie-Tooth (CMT) neuropathy. Here, we describe the analysis of mice carrying the DNM2 K562E mutation which has been associated with dominant-intermediate CMT type B (CMTDIB). Contrary to our expectations, heterozygous DNM2 K562E mutant mice did not develop definitive signs of an axonal or demyelinating neuropathy. Rather, we found a primary myopathy-like phenotype in these mice. A likely interpretation of these results is that the lack of a neuropathy in this mouse model has allowed the unmasking of a primary myopathy due to the DNM2 K562E mutation which might be overshadowed by the neuropathy in humans. Consequently, we hypothesize that a primary myopathy may also contribute to the disease mechanism in some CMTDIB patients. We propose that these findings should be considered in the evaluation of patients, the determination of the underlying disease processes and the development of tailored potential treatment strategies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Dinamina II/deficiencia , Enfermedades Musculares/genética , Miopatías Estructurales Congénitas/genética , Animales , Axones/metabolismo , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Dinamina II/genética , Heterocigoto , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/patología , Mutación/genética , Miopatías Estructurales Congénitas/patología , Fenotipo
4.
Elife ; 82019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30648534

RESUMEN

Myelination requires extensive plasma membrane rearrangements, implying that molecules controlling membrane dynamics play prominent roles. The large GTPase dynamin 2 (DNM2) is a well-known regulator of membrane remodeling, membrane fission, and vesicular trafficking. Here, we genetically ablated Dnm2 in Schwann cells (SCs) and in oligodendrocytes of mice. Dnm2 deletion in developing SCs resulted in severely impaired axonal sorting and myelination onset. Induced Dnm2 deletion in adult SCs caused a rapidly-developing peripheral neuropathy with abundant demyelination. In both experimental settings, mutant SCs underwent prominent cell death, at least partially due to cytokinesis failure. Strikingly, when Dnm2 was deleted in adult SCs, non-recombined SCs still expressing DNM2 were able to remyelinate fast and efficiently, accompanied by neuropathy remission. These findings reveal a remarkable self-healing capability of peripheral nerves that are affected by SC loss. In the central nervous system, however, we found no major defects upon Dnm2 deletion in oligodendrocytes.


Asunto(s)
Dinamina II/metabolismo , Oligodendroglía/metabolismo , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Muerte Celular , Diferenciación Celular , Supervivencia Celular , Citocinesis , Ratones , Mitosis , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , Transcriptoma/genética
5.
J Cell Biol ; 217(4): 1353-1368, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29434029

RESUMEN

Myelination calls for a remarkable surge in cell metabolism to facilitate lipid and membrane production. Endogenous fatty acid (FA) synthesis represents a potentially critical process in myelinating glia. Using genetically modified mice, we show that Schwann cell (SC) intrinsic activity of the enzyme essential for de novo FA synthesis, fatty acid synthase (FASN), is crucial for precise lipid composition of peripheral nerves and fundamental for the correct onset of myelination and proper myelin growth. Upon FASN depletion in SCs, epineurial adipocytes undergo lipolysis, suggestive of a compensatory role. Mechanistically, we found that a lack of FASN in SCs leads to an impairment of the peroxisome proliferator-activated receptor (PPAR) γ-regulated transcriptional program. In agreement, defects in myelination of FASN-deficient SCs could be ameliorated by treatment with the PPARγ agonist rosiglitazone ex vivo and in vivo. Our results reveal that FASN-driven de novo FA synthesis in SCs is mandatory for myelination and identify lipogenic activation of the PPARγ transcriptional network as a putative downstream functional mediator.


Asunto(s)
Ácidos Grasos/biosíntesis , Lipogénesis , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Animales , Células Cultivadas , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Fibras Nerviosas Mielínicas/efectos de los fármacos , PPAR gamma/agonistas , PPAR gamma/metabolismo , Rosiglitazona/farmacología , Células de Schwann/efectos de los fármacos , Nervio Ciático/citología , Nervio Ciático/efectos de los fármacos , Transducción de Señal , Transcripción Genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1273-1281, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28390949

RESUMEN

The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders with variable age of onset, characterized by the lysosomal accumulation of autofluorescent ceroid lipopigments. The endoplasmic reticulum (ER) is a critical organelle for normal cell function. Alteration of ER homeostasis leads to accumulation of misfolded protein in the ER and to activation of the unfolded protein response. ER stress and the UPR have recently been linked to the NCLs. In this review, we will discuss the evidence for UPR activation in the NCLs, and address its connection to disease pathogenesis. Further understanding of ER-stress response involvement in the NCLs may encourage development of novel therapeutical agents targeting these pathogenic pathways.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/terapia
7.
Hum Mol Genet ; 22(21): 4417-29, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23813975

RESUMEN

The ubiquitously expressed large GTPase Dynamin 2 (DNM2) plays a critical role in the regulation of intracellular membrane trafficking through its crucial function in membrane fission, particularly in endocytosis. Autosomal-dominant mutations in DNM2 cause tissue-specific human disorders. Different sets of DNM2 mutations are linked to dominant intermediate Charcot-Marie-Tooth neuropathy type B, a motor and sensory neuropathy affecting primarily peripheral nerves, or autosomal-dominant centronuclear myopathy (CNM) presenting with primary damage in skeletal muscles. To understand the underlying disease mechanisms, it is imperative to determine to which degree the primary affected cell types require DNM2. Thus, we used cell type-specific gene ablation to examine the consequences of DNM2 loss in skeletal muscle cells, the major relevant cell type involved in CNM. We found that DNM2 function in skeletal muscle is required for proper mouse development. Skeletal muscle-specific loss of DNM2 causes a reduction in muscle mass and in the numbers of muscle fibers, altered muscle fiber size distributions, irregular neuromuscular junctions (NMJs) and isolated degenerating intramuscular peripheral nerve fibers. Intriguingly, a lack of muscle-expressed DNM2 triggers an increase of lipid droplets (LDs) and mitochondrial defects. We conclude that loss of DNM2 function in skeletal muscles initiates a chain of harmful parallel and serial events, involving dysregulation of LDs and mitochondrial defects within altered muscle fibers, defective NMJs and peripheral nerve degeneration. These findings provide the essential basis for further studies on DNM2 function and malfunction in skeletal muscles in health and disease, potentially including metabolic diseases such as diabetes.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/fisiopatología , Dinamina II/deficiencia , Dinamina II/fisiología , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , Miopatías Estructurales Congénitas/fisiopatología , Unión Neuromuscular/fisiología , Nervios Periféricos/fisiología , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Dinamina II/genética , Dinamina II/metabolismo , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mutación , Miopatías Estructurales Congénitas/genética , Unión Neuromuscular/metabolismo , Especificidad de Órganos , Nervios Periféricos/metabolismo
8.
Brain ; 135(Pt 7): 2032-47, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22689911

RESUMEN

Mutations in myelin protein zero (MPZ) cause Charcot-Marie-Tooth disease type 1B. Many dominant MPZ mutations, including R98C, present as infantile onset dysmyelinating neuropathies. We have generated an R98C 'knock-in' mouse model of Charcot-Marie-Tooth type 1B, where a mutation encoding R98C was targeted to the mouse Mpz gene. Both heterozygous (R98C/+) and homozygous (R98C/R98C) mice develop weakness, abnormal nerve conduction velocities and morphologically abnormal myelin; R98C/R98C mice are more severely affected. MpzR98C is retained in the endoplasmic reticulum of Schwann cells and provokes a transitory, canonical unfolded protein response. Ablation of Chop, a mediator of the protein kinase RNA-like endoplasmic reticulum kinase unfolded protein response pathway restores compound muscle action potential amplitudes of R98C/+ mice but does not alter the reduced conduction velocities, reduced axonal diameters or clinical behaviour of these animals. R98C/R98C Schwann cells are developmentally arrested in the promyelinating stage, whereas development is delayed in R98C/+ mice. The proportion of cells expressing c-Jun, an inhibitor of myelination, is elevated in mutant nerves, whereas the proportion of cells expressing the promyelinating transcription factor Krox-20 is decreased, particularly in R98C/R98C mice. Our results provide a potential link between the accumulation of MpzR98C in the endoplasmic reticulum and a developmental delay in myelination. These mice provide a model by which we can begin to understand the early onset dysmyelination seen in patients with R98C and similar mutations.


Asunto(s)
Diferenciación Celular/fisiología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Modelos Animales de Enfermedad , Proteína P0 de la Mielina/fisiología , Células de Schwann/citología , Células de Schwann/metabolismo , Potenciales de Acción/fisiología , Animales , Axones/patología , Axones/fisiología , Axones/ultraestructura , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Retículo Endoplásmico/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Sustitución del Gen/métodos , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteína P0 de la Mielina/genética , Vaina de Mielina/genética , Vaina de Mielina/patología , Conducción Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-jun/biosíntesis , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Células de Schwann/ultraestructura , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Nervio Ciático/ultraestructura , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada/fisiología
9.
Brain ; 135(Pt 5): 1395-411, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22451505

RESUMEN

Mutations in dynamin 2 (DNM2) lead to dominant intermediate Charcot-Marie-Tooth neuropathy type B, while a different set of DNM2 mutations cause autosomal dominant centronuclear myopathy. In this study, we aimed to elucidate the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B and to find explanations for the tissue-specific defects that are associated with different DNM2 mutations in dominant intermediate Charcot-Marie-Tooth neuropathy type B versus autosomal dominant centronuclear myopathy. We used tissue derived from Dnm2-deficient mice to establish an appropriate peripheral nerve model and found that dominant intermediate Charcot-Marie-Tooth neuropathy type B-associated dynamin 2 mutants, but not autosomal dominant centronuclear myopathy mutants, impaired myelination. In contrast to autosomal dominant centronuclear myopathy mutants, Schwann cells and neurons from the peripheral nervous system expressing dominant intermediate Charcot-Marie-Tooth neuropathy mutants showed defects in clathrin-mediated endocytosis. We demonstrate that, as a consequence, protein surface levels are altered in Schwann cells. Furthermore, we discovered that myelination is strictly dependent on Dnm2 and clathrin-mediated endocytosis function. Thus, we propose that altered endocytosis is a major contributing factor to the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B.


Asunto(s)
Clatrina/farmacología , Dinamina II/genética , Endocitosis/fisiología , Regulación de la Expresión Génica/genética , Mutación/genética , Neuronas/fisiología , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Medio de Cultivo Libre de Suero/farmacología , Embrión de Mamíferos , Endocitosis/efectos de los fármacos , Citometría de Flujo , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Humanos , Integrina beta1/metabolismo , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuronas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Receptor ErbB-2/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Factores de Tiempo , Transfección , Transferrina/metabolismo
10.
Hum Mol Genet ; 20(11): 2081-90, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21363884

RESUMEN

More than 120 mutations in the Myelin Protein Zero gene (MPZ, P0) cause various forms of hereditary neuropathy. Two human mutations encoding either P0S63C or P0S63del have been shown to cause demyelination in mice through different gain of function pathomechanisms. P0S63del, for example, is retained in the endoplasmic reticulum (ER) and elicits a pathogenetic unfolded protein response (UPR). As P0 likely forms oligomers, another gain of abnormal function could include a dominant-negative interaction between P0S63del and normal P0 (P0wt). To test this idea, we generated a transgenic mouse that expressed a form of P0wt with a myc epitope tag at the C terminus (P0ct-myc). We show that P0ct-myc is trafficked and functions like P0wt, thus providing a new tool to study P0 in vivo. In mice that express both P0ct-myc and P0S63del, P0S63del specifically delays the transit of P0ct-myc through the ER and reduces the level of P0wt in the myelin sheath by half-a level previously shown to cause demyelination in mice and humans. Surprisingly, P0ct-myc does not co-immunoprecipitate with P0S63del, suggesting an indirect interaction. Thus, P0S63del causes not only a UPR-related toxic mechanism, but also a dominant-negative effect on P0wt that probably contributes to demyelinating neuropathy.


Asunto(s)
Enfermedades Desmielinizantes/patología , Retículo Endoplásmico/metabolismo , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Vaina de Mielina/patología , Animales , Western Blotting , Enfermedades Desmielinizantes/genética , Modelos Animales de Enfermedad , Epítopos/genética , Expresión Génica , Genes myc , Humanos , Inmunoprecipitación , Ratones , Ratones Transgénicos , Microscopía Inmunoelectrónica , Mutagénesis Sitio-Dirigida , Mutación , Transporte de Proteínas
11.
Neuron ; 57(3): 393-405, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18255032

RESUMEN

Deletion of serine 63 from P0 glycoprotein (P0S63del) causes Charcot-Marie-Tooth 1B neuropathy in humans, and P0S63del produces a similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum and fails to be incorporated into myelin. Here we report that P0S63del is misfolded and Schwann cells mount a consequential canonical unfolded protein response (UPR), including expression of the transcription factor CHOP, previously associated with apoptosis in ER-stressed cells. UPR activation and CHOP expression respond dynamically to P0S63del levels and are reversible but are associated with only limited apoptosis of Schwann cells. Nonetheless, Chop ablation in S63del mice completely rescues their motor deficit and reduces active demyelination 2-fold. This indicates that signaling through the CHOP arm of the UPR provokes demyelination in inherited neuropathy. S63del mice also provide an opportunity to explore how cells can dysfunction yet survive in prolonged ER stress-important for neurodegeneration related to misfolded proteins.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedades Desmielinizantes/etiología , Regulación de la Expresión Génica/fisiología , Actividad Motora/genética , Transducción de Señal/genética , Factor de Transcripción CHOP/deficiencia , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Células CHO , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Cricetinae , Cricetulus , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/genética , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Mutación/fisiología , Proteína P0 de la Mielina/genética , Fibras Nerviosas Mielínicas/fisiología , Transfección/métodos
12.
J Neurosci ; 26(8): 2358-68, 2006 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-16495463

RESUMEN

Missense mutations in 22 genes account for one-quarter of Charcot-Marie-Tooth (CMT) hereditary neuropathies. Myelin Protein Zero (MPZ, P0) mutations produce phenotypes ranging from adult demyelinating (CMT1B) to early onset [Déjérine-Sottas syndrome (DSS) or congenital hypomyelination] to predominantly axonal neuropathy, suggesting gain of function mechanisms. To test this directly, we produced mice in which either the MpzS63C (DSS) or MpzS63del (CMT1B) transgene was inserted randomly, so that the endogenous Mpz alleles could compensate for any loss of mutant P0 function. We show that either mutant allele produces demyelinating neuropathy that mimics the corresponding human disease. However, P0S63C creates a packing defect in the myelin sheath, whereas P0S63del does not arrive to the myelin sheath and is instead retained in the endoplasmic reticulum, where it elicits an unfolded protein response (UPR). This is the first evidence for UPR in association with neuropathy and provides a model to determine whether and how mutant proteins can provoke demyelination from outside of myelin.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Modelos Animales de Enfermedad , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Animales , Enfermedad de Charcot-Marie-Tooth/patología , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Fibras Nerviosas Mielínicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...