Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 172(3): 1548-1562, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27677986

RESUMEN

Ethylene is an essential hormone in plants that is involved in low-oxygen and reoxygenation responses. As a key transcription factor in ethylene signaling, ETHYLENE INSENSITIVE3 (EIN3) activates targets that trigger various responses. However, most of these targets are still poorly characterized. Through analyses of our microarray data and the published Arabidopsis (Arabidopsis thaliana) EIN3 chromatin immunoprecipitation sequencing data set, we inferred the putative targets of EIN3 during anoxia-reoxygenation. Among them, GDH2, which encodes one subunit of glutamate dehydrogenase (GDH), was chosen for further studies for its role in tricarboxylic acid cycle replenishment. We demonstrated that both GDH1 and GDH2 are induced during anoxia and reoxygenation and that this induction is mediated via ethylene signaling. In addition, the results of enzymatic assays showed that the level of GDH during anoxia-reoxygenation decreased in the ethylene-insensitive mutants ein2-5 and ein3eil1 Global metabolite analysis indicated that the deamination activity of GDH might regenerate 2-oxoglutarate, which is a cosubstrate that facilitates the breakdown of alanine by alanine aminotransferase when reoxygenation occurs. Moreover, ineffective tricarboxylic acid cycle replenishment, disturbed carbohydrate metabolism, reduced phytosterol biosynthesis, and delayed energy regeneration were found in gdh1gdh2 and ethylene mutants during reoxygenation. Taken together, these data illustrate the essential role of EIN3-regulated GDH activity in metabolic adjustment during anoxia-reoxygenation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Etilenos/farmacología , Glutamato Deshidrogenasa/metabolismo , Oxígeno/metabolismo , Anaerobiosis/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Proteínas de Unión al ADN , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fenotipo , Fitosteroles/biosíntesis , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
2.
Mol Med ; 21(1): 988-1001, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26701313

RESUMEN

Sepsis remains a major medical issue despite decades of research. Identification of important inflammatory cascades and key molecular mediators are crucial for developing intervention and prevention strategies. In this study, we conducted a comparative oxylipin metabolomics study to gain a comprehensive picture of lipid mediator dynamics during the initial hyperinflammatory phase of sepsis, and demonstrated, in parallel, the efficacy of simvastatin and plant galactolipid, 1,2-di-O-α-linolenoyl-3-O-ß-galactopyranosyl-sn-glycerol (dLGG) in the homeostatic regulation of the oxylipin metabolome using a lipopolysaccharide (LPS)-induced sepsis C57BL/6J mouse model. LPS increased the systemic and organ levels of proinflammatory metabolites of linoleic acid including leukotoxin diols (9-,10-DHOME, 12-,13-DHOME) and octadecadienoic acids (9-HODE and 13-HODE) and arachidonic acid-derived prostanoid, PGE2, and hydroxyeicosatetraenoic acids (8-, 12- and 15-HETE). Treatment with either compound decreased the levels of proinflammatory metabolites and elevated proresolution lipoxin A4, 5(6)-EET, 11(12)-EET and 15-deoxy-PGJ2. dLGG and simvastatin ameliorated the effects of LPS-induced mitogen-activated protein kinase (MAPK)-dependent activation of cPLA2, cyclooxygenase-2, lipoxygenase, cytochrome P450 and/or epoxide hydrolase lowered systemic TNF-α and IL-6 levels and aminotransferase activities and decreased organ-specific infiltration of inflammatory leukocytes and macrophages, and septic shock-induced multiple organ damage. Furthermore, both dLGG and simvastatin increased the survival rates in the cecal ligation and puncture (CLP) sepsis model. This study provides new insights into the role of oxylipins in sepsis pathogenesis and highlights the potential of simvastatin and dLGG in sepsis therapy and prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...