Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
medRxiv ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39417106

RESUMEN

Biliary tract cancers demonstrate profound therapeutic resistance, and broadly effective therapies for refractory disease are lacking. We conducted a single-arm, second-line phase II trial combining DKN-01, a humanized monoclonal antibody targeting Dickkopf-1 (DKK-1), and nivolumab to treat patients with advanced biliary tract cancer (NCT04057365). No objective responses were seen. To identify mechanisms of treatment failure, we analyzed paired pre-treatment and on-treatment biopsies using scRNA-seq and constructed a detailed molecular classification of malignant and immune cells. We annotated five biliary tract cancer malignant cell states: classical, basal, mesenchymal, neural-like, and endothelial-like. Neural-like and endothelial-like states, which drive therapeutic resistance in other cancers, have not previously been described in BTC. Malignant cell states co-varied with distinct immune cell states, revealing diverse mechanisms of myeloid and T-cell mediated immune suppression, including M2 myeloid and terminally exhausted T cell programs that were induced by DKN-01/nivolumab. Here, we provide the first systematic classification of functionally annotated cell states in biliary tract cancer and provide new insight into resistance mechanisms to an immunotherapy combination that can inform the next generation of trials.

2.
Cell ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39383862

RESUMEN

Aberrant expression of repeat RNAs in pancreatic ductal adenocarcinoma (PDAC) mimics viral-like responses with implications on tumor cell state and the response of the surrounding microenvironment. To better understand the relationship of repeat RNAs in human PDAC, we performed spatial molecular imaging at single-cell resolution in 46 primary tumors, revealing correlations of high repeat RNA expression with alterations in epithelial state in PDAC cells and myofibroblast phenotype in cancer-associated fibroblasts (CAFs). This loss of cellular identity is observed with dosing of extracellular vesicles (EVs) and individual repeat RNAs of PDAC and CAF cell culture models pointing to cell-cell intercommunication of these viral-like elements. Differences in PDAC and CAF responses are driven by distinct innate immune signaling through interferon regulatory factor 3 (IRF3). The cell-context-specific viral-like responses to repeat RNAs provide a mechanism for modulation of cellular plasticity in diverse cell types in the PDAC microenvironment.

3.
Hepatol Commun ; 8(10)2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39330965

RESUMEN

BACKGROUND: HCC is a highly vascular tumor, and many effective drug regimens target the tumor blood vessels. Prior bulk HCC subtyping data used bulk transcriptomes, which contained a mixture of parenchymal and stromal contributions. METHODS: We utilized computational deconvolution and cell-cell interaction analyses to cell type-specific (tumor-enriched and vessel-enriched) spatial transcriptomic data collected from 41 resected HCC tissue specimens. RESULTS: We report that the prior Hoshida bulk transcriptional subtyping schema is driven largely by an endothelial fraction, show an alternative tumor-specific schema has potential prognostic value, and use spatially paired ligand-receptor analyses to identify known and novel (LGALS9 tumor-HAVCR2 vessel) signaling relationships that drive HCC biology in a subtype-specific and potentially targetable manner. CONCLUSIONS: Our study leverages spatial gene expression profiling technologies to dissect HCC heterogeneity and identify heterogeneous signaling relationships between cancer cells and their endothelial cells. Future validation and expansion of these findings may validate novel cancer-endothelial cell interactions and related drug targets.


Asunto(s)
Carcinoma Hepatocelular , Células Endoteliales , Perfilación de la Expresión Génica , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Células Endoteliales/metabolismo , Comunicación Celular/genética , Transcriptoma , Masculino , Transducción de Señal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Pronóstico
4.
Theranostics ; 14(15): 5745-5761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346545

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an invasive and rapidly progressive malignancy. A major challenge in patient management is the lack of a reliable imaging tool to monitor tumor response to treatment. Tumor-associated fibrosis characterized by high type I collagen is a hallmark of PDAC, and fibrosis further increases in response to neoadjuvant chemoradiotherapy (CRT). We hypothesized that molecular positron emission tomography (PET) using a type I collagen-specific imaging probe, 68Ga-CBP8 can detect and measure changes in tumor fibrosis in response to standard treatment in mouse models and patients with PDAC. Methods: We evaluated the specificity of 68Ga-CBP8 PET to tumor collagen and its ability to differentiate responders from non-responders based on the dynamic changes of fibrosis in nude mouse models of human PDAC including FOLFIRNOX-sensitive (PANC-1 and PDAC6) and FOLFIRINOX-resistant (SU.86.86). Next, we demonstrated the specificity and sensitivity of 68Ga-CBP8 to the deposited collagen in resected human PDAC and pancreas tissues. Eight male participant (49-65 y) with newly diagnosed PDAC underwent dynamic 68Ga-CBP8 PET/MRI, and five underwent follow up 68Ga-CBP8 PET/MRI after completing standard CRT. PET parameters were correlated with tumor collagen content and markers of response on histology. Results: 68Ga-CBP8 showed specific binding to PDAC compared to non-binding 68Ga-CNBP probe in two mouse models of PDAC using PET imaging and to resected human PDAC using autoradiography (P < 0.05 for all comparisons). 68Ga-CBP8 PET showed 2-fold higher tumor signal in mouse models following FOLFIRINOX treatment in PANC-1 and PDAC6 models (P < 0.01), but no significant increase after treatment in FOLFIRINOX resistant SU.86.86 model. 68Ga-CBP8 binding to resected human PDAC was significantly higher (P < 0.0001) in treated versus untreated tissue. PET/MRI of PDAC patients prior to CRT showed significantly higher 68Ga-CBP8 uptake in tumor compared to pancreas (SUVmean: 2.35 ± 0.36 vs. 1.99 ± 0.25, P = 0.036, n = 8). PET tumor values significantly increased following CRT compared to untreated tumors (SUVmean: 2.83 ± 0.30 vs. 2.25 ± 0.41, P = 0.01, n = 5). Collagen deposition significantly increased in response to CRT (59 ± 9% vs. 30 ± 9%, P=0.0005 in treated vs. untreated tumors). Tumor and pancreas collagen content showed a positive direct correlation with SUVmean (R2 = 0.54, P = 0.0007). Conclusions: This study demonstrates the specificity of 68Ga-CBP8 PET to tumor type I collagen and its ability to differentiate responders from non-responders based on the dynamic changes of fibrosis in PDAC. The results highlight the potential use of collagen PET as a non-invasive tool for monitoring response to treatment in patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Colágeno Tipo I , Imagen por Resonancia Magnética , Neoplasias Pancreáticas , Tomografía de Emisión de Positrones , Anciano , Animales , Humanos , Masculino , Ratones , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Fibrosis/diagnóstico por imagen , Fluorouracilo/uso terapéutico , Fluorouracilo/farmacología , Radioisótopos de Galio , Irinotecán/uso terapéutico , Irinotecán/farmacología , Leucovorina/uso terapéutico , Imagen por Resonancia Magnética/métodos , Ratones Desnudos , Oxaliplatino/uso terapéutico , Oxaliplatino/farmacología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Investigación Biomédica Traslacional , Resultado del Tratamiento
5.
Nat Genet ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227743

RESUMEN

In combination with cell-intrinsic properties, interactions in the tumor microenvironment modulate therapeutic response. We leveraged single-cell spatial transcriptomics to dissect the remodeling of multicellular neighborhoods and cell-cell interactions in human pancreatic cancer associated with neoadjuvant chemotherapy and radiotherapy. We developed spatially constrained optimal transport interaction analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial distance and ligand-receptor gene expression. Our results uncovered a marked change in ligand-receptor interactions between cancer-associated fibroblasts and malignant cells in response to treatment, which was supported by orthogonal datasets, including an ex vivo tumoroid coculture system. We identified enrichment in interleukin-6 family signaling that functionally confers resistance to chemotherapy. Overall, this study demonstrates that characterization of the tumor microenvironment using single-cell spatial transcriptomics allows for the identification of molecular interactions that may play a role in the emergence of therapeutic resistance and offers a spatially based analysis framework that can be broadly applied to other contexts.

6.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559183

RESUMEN

Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from patients with metastatic cancer, with a median of 2,799 CTCs purified per patient. Isolation of many CTCs from individual patients enables characterization of their morphological and molecular heterogeneity, including cell and nuclear size and RNA expression. It also allows robust detection of gene copy number variation, a definitive cancer marker with potential diagnostic applications. High-volume microfluidic enrichment of CTCs constitutes a new dimension in liquid biopsies.

7.
Cancer Res ; 84(9): 1517-1533, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38587552

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an immunosuppressive tumor microenvironment enriched with cancer-associated fibroblasts (CAF). This study used a convergence approach to identify tumor cell and CAF interactions through the integration of single-cell data from human tumors with human organoid coculture experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing data indicated that CAF density is associated with increased inflammation and epithelial-mesenchymal transition (EMT) in epithelial cells. Transfer learning using transcriptional data from patient-derived organoid and CAF cocultures provided in silico validation of CAF induction of inflammatory and EMT epithelial cell states. Further experimental validation in cocultures demonstrated integrin beta 1 (ITGB1) and vascular endothelial factor A (VEGFA) interactions with neuropilin-1 mediating CAF-epithelial cell cross-talk. Together, this study introduces transfer learning from human single-cell data to organoid coculture analyses for experimental validation of discoveries of cell-cell cross-talk and identifies fibroblast-mediated regulation of EMT and inflammation. SIGNIFICANCE: Adaptation of transfer learning to relate human single-cell RNA sequencing data to organoid-CAF cocultures facilitates discovery of human pancreatic cancer intercellular interactions and uncovers cross-talk between CAFs and tumor cells through VEGFA and ITGB1.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Inflamación , Integrina beta1 , Neoplasias Pancreáticas , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Inflamación/patología , Inflamación/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Organoides/patología , Organoides/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Comunicación Celular
8.
Cancer Lett ; 587: 216713, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38364961

RESUMEN

Human leukocyte antigen (HLA) class I defects are associated with cancer progression. However, their prognostic significance is controversial and may be modulated by immune checkpoints. Here, we investigated whether the checkpoint B7-H3 modulates the relationship between HLA class I and pancreatic ductal adenocarcinoma (PDAC) prognosis. PDAC tumors were analyzed for the expression of B7-H3, HLA class I, HLA class II molecules, and for the presence of tumor-infiltrating immune cells. We observed defective HLA class I and HLA class II expressions in 75% and 59% of PDAC samples, respectively. HLA class I and B7-H3 expression were positively related at mRNA and protein level, potentially because of shared regulation by RELA, a sub-unit of NF-kB. High B7-H3 expression and low CD8+ T cell density were indicators of poor survival, while HLA class I was not. Defective HLA class I expression was associated with unfavorable survival only in patients with low B7-H3 expression. Favorable survival was observed only when HLA class I expression was high and B7-H3 expression low. Our results provide the rationale for targeting B7-H3 in patients with PDAC tumors displaying high HLA class I levels.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígenos B7/genética , Antígenos B7/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Antígenos de Histocompatibilidad Clase I , Linfocitos Infiltrantes de Tumor , Neoplasias Pancreáticas/metabolismo , Pronóstico
9.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393682

RESUMEN

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Asunto(s)
Complejo CD3 , Endopeptidasas , Proteínas Ligadas a GPI , Inmunoterapia Adoptiva , Mesotelina , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Adenocarcinoma/patología
10.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38105940

RESUMEN

Purpose: Dysregulation of viral-like repeat RNAs are a common feature across many malignancies that are linked with immunological response, but the characterization of these in hepatocellular carcinoma (HCC) is understudied. In this study, we performed RNA in situ hybridization (RNA-ISH) of different repeat RNAs, immunohistochemistry (IHC) for immune cell subpopulations, and spatial transcriptomics to understand the relationship of HCC repeat expression, immune response, and clinical outcomes. Experimental Design: RNA-ISH for LINE1, HERV-K, HERV-H, and HSATII repeats and IHC for T-cell, Treg, B-cell, macrophage, and immune checkpoint markers were performed on 43 resected HCC specimens. Spatial transcriptomics on tumor and vessel regions of interest was performed on 28 specimens from the same cohort. Results: High HERV-K and high LINE1 expression were both associated with worse overall survival. There was a positive correlation between LINE1 expression and FOXP3 T-regulatory cells (r = 0.51 p < 0.001) as well as expression of the TIM3 immune checkpoint (r = 0.34, p = 0.03). Spatial transcriptomic profiling of HERV-K high and LINE-1 high tumors identified elevated expression of multiple genes previously associated with epithelial mesenchymal transition, cellular proliferation, and worse overall prognosis in HCC including SSX1, MAGEC2, and SPINK1. Conclusion: Repeat RNAs may serve as useful prognostic biomarkers in HCC and may also serve as novel therapeutic targets. Additional study is needed to understand the mechanisms by which repeat RNAs impact HCC tumorigenesis.

11.
Mob DNA ; 14(1): 18, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990347

RESUMEN

In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.

12.
Nucleic Acids Res ; 51(21): 11453-11465, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823611

RESUMEN

SINE-VNTR-Alu (SVA) retrotransposons are evolutionarily young and still-active transposable elements (TEs) in the human genome. Several pathogenic SVA insertions have been identified that directly mutate host genes to cause neurodegenerative and other types of diseases. However, due to their sequence heterogeneity and complex structures as well as limitations in sequencing techniques and analysis, SVA insertions have been less well studied compared to other mobile element insertions. Here, we identified polymorphic SVA insertions from 3646 whole-genome sequencing (WGS) samples of >150 diverse populations and constructed a polymorphic SVA insertion reference catalog. Using 20 long-read samples, we also assembled reference and polymorphic SVA sequences and characterized the internal hexamer/variable-number-tandem-repeat (VNTR) expansions as well as differing SVA activity for SVA subfamilies and human populations. In addition, we developed a module to annotate both reference and polymorphic SVA copies. By characterizing the landscape of both reference and polymorphic SVA retrotransposons, our study enables more accurate genotyping of these elements and facilitate the discovery of pathogenic SVA insertions.


Asunto(s)
Genoma Humano , Retroelementos , Humanos , Elementos Alu , Genoma Humano/genética , Repeticiones de Minisatélite/genética , Retroelementos/genética , Elementos de Nucleótido Esparcido Corto
13.
Blood ; 142(21): 1831-1844, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37699201

RESUMEN

Severe acute graft-versus-host disease (aGVHD) is associated with significant mortality and morbidity, especially in steroid-resistant (SR) cases. Spatial transcriptomic technology can elucidate tissue-based interactions in vivo and possibly identify predictors of treatment response. Tissue sections from 32 treatment-naïve patients with biopsy-confirmed lower gastrointestinal (GI) aGVHD were obtained. The GeoMx digital spatial profiler was used to capture transcriptome profiles of >18 000 genes from different foci of immune infiltrates, colonic epithelium, and vascular endothelium. Each tissue compartment sampled showed 2 distinct clusters that were analyzed for differential expression and spatially resolved correlation of gene signatures. Classic cell-mediated immunity signatures, normal differentiated epithelial cells, and inflamed vasculature dominated foci sampled from steroid-sensitive cases. In contrast, a neutrophil predominant noncanonical inflammation with regenerative epithelial cells and some indication of angiogenic endothelial response was overrepresented in areas from SR cases. Evaluation of potential prognostic biomarkers identified ubiquitin specific peptidase 17-like (USP17L) family of genes as being differentially expressed in immune cells from patients with worsened survival. In summary, we demonstrate distinct tissue niches with unique gene expression signatures within lower GI tissue from patients with aGVHD and provide evidence of a potential prognostic biomarker.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Transcriptoma , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/genética , Inmunidad Celular , Esteroides/uso terapéutico , Mucosa Intestinal , Enfermedad Aguda
14.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425692

RESUMEN

In combination with cell intrinsic properties, interactions in the tumor microenvironment modulate therapeutic response. We leveraged high-plex single-cell spatial transcriptomics to dissect the remodeling of multicellular neighborhoods and cell-cell interactions in human pancreatic cancer associated with specific malignant subtypes and neoadjuvant chemotherapy/radiotherapy. We developed Spatially Constrained Optimal Transport Interaction Analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial distance and ligand-receptor gene expression. Our results uncovered a marked change in ligand-receptor interactions between cancer-associated fibroblasts and malignant cells in response to treatment, which was supported by orthogonal datasets, including an ex vivo tumoroid co-culture system. Overall, this study demonstrates that characterization of the tumor microenvironment using high-plex single-cell spatial transcriptomics allows for identification of molecular interactions that may play a role in the emergence of chemoresistance and establishes a translational spatial biology paradigm that can be broadly applied to other malignancies, diseases, and treatments.

15.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37292765

RESUMEN

Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.

16.
J Clin Pathol ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258254

RESUMEN

AIM: Micropapillary carcinoma (MPC) is a recognised WHO variant of colonic carcinoma (CC), although little is known about its prognosis, immune microenvironment and molecular alterations. We investigated its clinical, pathological and immunological characteristics. METHODS: We assessed 903 consecutive CCs and used the WHO definition to identify MPC. We recorded serrated and mucinous differentiation and mismatch repair (MMR) status. We performed immunohistochemistry and quantification on tissue microarrays for HLA class I/II proteins, beta-2-microglobulin (B2MG), CD8, CD163, LAG3, PD-L1, FoxP3, PD-L1and BRAF V600E. RESULTS: We classified 8.6% (N=78) of CC as MPC. Relative to non-MPC, MPC was more often high grade (p=0.03) and showed serrated morphology (p<0.01); however, we found no association with extramural venous invasion (p=0.41) and American Joint Committee on Cancer stage (p=0.95). MPCs showed lower numbers of CD8 positive lymphocytes (p<0.01), lower tumour cell B2MG expression (p=0.04) and lower tumour cell PD-L1 expression (p<0.01). There was no difference in HLA class I/II, LAG3, FOXP3, CD163 and PD-L1 positive histiocytes. There was no association with MMR status or BRAF V600E relative to non-MPC. MPC was not associated with decreased disease-specific survival (p=0.36). CONCLUSION: MPCs are associated with high-grade differentiation and a less active immune microenvironment than non-MPC. MPC is not associated with inferior disease-specific survival.

17.
Nat Cancer ; 4(3): 365-381, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36914816

RESUMEN

Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types. We demonstrate that selectivity is determined by expression of the liver-resident cytosolic sulfotransferase enzyme SULT1A1, which sulfonates YC-1. Sulfonation stimulates covalent binding of YC-1 to lysine residues in protein targets, enriching for RNA-binding factors. Computational analysis defined a wider group of structurally related SULT1A1-activated small molecules with distinct target profiles, which together constitute an untapped small-molecule class. These studies provide a foundation for preclinical development of these agents and point to the broader potential of exploiting SULT1A1 activity for selective targeting strategies.


Asunto(s)
Alquilantes , Neoplasias Hepáticas , Humanos , Sulfotransferasas , Neoplasias Hepáticas/tratamiento farmacológico , Arilsulfotransferasa
18.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36747644

RESUMEN

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. While proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1, L1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible detectable expression in corresponding normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore the potential of ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 M) ORF1p concentrations in patient plasma samples across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multi-analyte panel, and provides early therapeutic response monitoring in gastric and esophageal cancers. Together, these observations nominate ORF1p as a multi-cancer biomarker with potential utility for disease detection and monitoring.

19.
Cell Rep ; 42(3): 112129, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36821441

RESUMEN

TGF-ß induces senescence in embryonic tissues. Whether TGF-ß in the hypoxic tumor microenvironment (TME) induces senescence in cancer and how the ensuing senescence-associated secretory phenotype (SASP) remodels the cellular TME to influence immune checkpoint inhibitor (ICI) responses are unknown. We show that TGF-ß induces a deeper senescent state under hypoxia than under normoxia; deep senescence correlates with the degree of E2F suppression and is marked by multinucleation, reduced reentry into proliferation, and a distinct 14-gene SASP. Suppressing TGF-ß signaling in tumors in an immunocompetent mouse lung cancer model abrogates endogenous senescent cells and suppresses the 14-gene SASP and immune infiltration. Untreated human lung cancers with a high 14-gene SASP display immunosuppressive immune infiltration. In a lung cancer clinical trial of ICIs, elevated 14-gene SASP is associated with increased senescence, TGF-ß and hypoxia signaling, and poor progression-free survival. Thus, TME-induced senescence may represent a naturally occurring state in cancer, contributing to an immune-suppressive phenotype associated with immune therapy resistance.


Asunto(s)
Neoplasias Pulmonares , Factor de Crecimiento Transformador beta , Ratones , Animales , Humanos , Fenotipo , Modelos Animales de Enfermedad , Microambiente Celular , Microambiente Tumoral , Senescencia Celular/fisiología
20.
J Clin Pathol ; 76(9): 582-590, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36823143

RESUMEN

AIMS: The lack of accepted scoring criteria has precluded the use of p53 in routine practice. We evaluate the utility of automated quantitative p53 analysis in risk stratifying Barrett's oesophagus (BE) patients using non-dysplastic BE (NDBE) biopsies in a multicentric cohort of BE progressor (P) and non-progressor (NP) patients. METHODS: NDBE biopsies prior to the diagnosis of advanced neoplasia from 75 BE-P, and index and last surveillance biopsies from 148 BE-NP were stained for p53, and scored digitally as 1+, 2+ and 3+. A secondary cohort of 30 BE-P was evaluated. RESULTS: Compared with BE-NP, BE-P was predominantly men (p=0.001), ≥55 years of age (p=0.008), with longer BE segments (71% vs 33%; p<0.001). The mean number of 3+p53 positive cells and 3+ positive glands were significantly more in BE-P versus BE-NP NDBE biopsies (175 vs 9.7, p<0.001; 9.8 vs 0.1; p<0.001, respectively). At a cut-off of ≥10 p53 (3+) positive cells, the sensitivity and specificity of the assay to identify BE-P were 39% and 93%. On multivariate analysis, scoring p53 in NDBE biopsies, age, gender and length of BE were significantly associated with neoplastic progression. 54% of patients classified as prevalent dysplasia showed an abnormal p53 immunohistochemical stain. These findings were validated in the secondary cohort. CONCLUSIONS: Automated p53 analysis in NDBE biopsies serves as a promising tool for assessing BE neoplastic progression and risk stratification. Our study highlights the practical applicability of p53 assay to routine surveillance practice and its ability to detect prevalent dysplasia.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Masculino , Humanos , Femenino , Neoplasias Esofágicas/patología , Proteína p53 Supresora de Tumor/análisis , Adenocarcinoma/patología , Esófago de Barrett/diagnóstico , Esófago de Barrett/patología , Biopsia , Hiperplasia , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...