Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 81(24): 8379-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26431975

RESUMEN

Clostridium ljungdahlii is an important synthesis gas-fermenting bacterium used in the biofuels industry, and a preliminary investigation showed that it has some tolerance to oxygen when cultured in rich mixotrophic medium. Batch cultures not only continue to grow and consume H2, CO, and fructose after 8% O2 exposure, but fermentation product analysis revealed an increase in ethanol concentration and decreased acetate concentration compared to non-oxygen-exposed cultures. In this study, the mechanisms for higher ethanol production and oxygen/reactive oxygen species (ROS) detoxification were identified using a combination of fermentation, transcriptome sequencing (RNA-seq) differential expression, and enzyme activity analyses. The results indicate that the higher ethanol and lower acetate concentrations were due to the carboxylic acid reductase activity of a more highly expressed predicted aldehyde oxidoreductase (CLJU_c24130) and that C. ljungdahlii's primary defense upon oxygen exposure is a predicted rubrerythrin (CLJU_c39340). The metabolic responses of higher ethanol production and oxygen/ROS detoxification were found to be linked by cofactor management and substrate and energy metabolism. This study contributes new insights into the physiology and metabolism of C. ljungdahlii and provides new genetic targets to generate C. ljungdahlii strains that produce more ethanol and are more tolerant to syngas contaminants.


Asunto(s)
Acetatos/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Aldehído Oxidorreductasas/metabolismo , Secuencia de Bases , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Dióxido de Carbono/metabolismo , Clostridium/enzimología , Clostridium/crecimiento & desarrollo , ADN Bacteriano/genética , Metabolismo Energético/fisiología , Fermentación/fisiología , Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Oxidación-Reducción/efectos de los fármacos , Oxidorreductasas/metabolismo , Oxígeno/farmacología , Alineación de Secuencia , Análisis de Secuencia de ADN
2.
Adv Appl Microbiol ; 70: 57-92, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20359454

RESUMEN

World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels.


Asunto(s)
Bacterias/metabolismo , Biocombustibles , Gases/metabolismo , Aldehído Oxidorreductasas/metabolismo , Biomasa , Vías Biosintéticas , Butanoles/metabolismo , Catálisis , Etanol/metabolismo , Hidrógeno/metabolismo , Complejos Multienzimáticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA