Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 26(4): 106381, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37009211

RESUMEN

Small molecule IAP antagonists - SMAC mimetics (SM) - are being developed as an anticancer therapy. SM therapy was demonstrated not only to sensitize tumor cells to TNFα-mediated cell death but also to exert immunostimulatory properties. Their good safety and tolerability profile, plus promising preclinical data, warrants further investigation into their various effects within the tumor microenvironment. Using in vitro models of human tumor cells and fibroblast spheroids co-cultured with primary immune cells, we investigated the effects of SM on immune cell activation. SM treatment induces the maturation of human PBMC- and patient-derived dendritic cells (DC), and modulates cancer-associated fibroblasts towards an immune interacting phenotype. Finally, SM-induced tumor necroptosis further enhances DC activation, leading also to higher T-cell activation and infiltration into the tumor site. These results highlight the relevance of using heterotypic in vitro models to investigate the effects of targeted therapies on different components of the tumor microenvironment.

2.
Front Immunol ; 13: 1008764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159851

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide and demands more effective treatments. We sought to identify tumor selective CRC antigens and their therapeutic potential for cytotoxic T-cell targeting by transcriptomic and immunohistochemical analysis. LY6G6D was identified as a tumor selectively expressed CRC antigen, mainly in the microsatellite stable (MSS) subtype. A specific anti LY6G6D/CD3 T cell engager (TcE) was generated and demonstrated potent tumor cell killing and T cell activation in vitro. Ex vivo treatment of primary patient-derived CRC tumor slice cultures with the LY6G6D/CD3 TcE led to IFNγ secretion in LY6G6D positive tumor samples. In vivo, LY6G6D/CD3 TcE monotherapy demonstrated tumor regressions in pre-clinical mouse models of engrafted human CRC tumor cells and PBMCs. Lastly, 2D and 3D cocultures of LY6G6D positive and negative cells were used to explore the bystander killing of LY6G6D negative cells after specific activation of T cells by LY6G6D positive cells. LY6G6D/CD3 TcE treatment was shown to lyse target negative cells in the vicinity of target positive cells through a combined effect of IFNγ, TNFα and Fas/FasL. In summary, LY6G6D was identified as a selectively expressed CRC antigen that can be utilized to potently re-direct and activate cytotoxic T-cells to lyse LY6G6D expressing CRC using a TcE. This effect can be spread to target negative neighboring tumor cells, potentially leading to improved therapeutic efficacy.


Asunto(s)
Neoplasias Colorrectales , Factor de Necrosis Tumoral alfa , Animales , Antígenos de Neoplasias , Humanos , Inmunoglobulinas , Activación de Linfocitos , Ratones , Linfocitos T Citotóxicos
3.
Front Immunol ; 13: 862757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967294

RESUMEN

VISTA (PD-1H) is an immune regulatory molecule considered part of the next wave of immuno-oncology targets. VISTA is an immunoglobulin (Ig) superfamily cell surface molecule mainly expressed on myeloid cells, and to some extent on NK cells and T cells. In previous preclinical studies, some VISTA-targeting antibodies provided immune inhibitory signals, while other antibodies triggered immune stimulatory signals. Importantly, for therapeutic antibodies, the isotype backbone can have a strong impact on antibody function. To elucidate the mode of action of immune stimulatory anti-VISTA antibodies, we studied three different anti-human VISTA antibody clones, each on three different IgG isotypes currently used for therapeutic antibodies: unaltered IgG1 (IgG1-WT), IgG1-KO (IgG1-LL234,235AA-variant with reduced Fc-effector function), and IgG4-Pro (IgG4- S228P-variant with stabilized hinge region). Antibody functionality was analysed in mixed leukocyte reaction (MLR) of human peripheral blood mononuclear cells (PBMCs), as a model system for ongoing immune reactions, on unstimulated human PBMCs, as a model system for a resting immune system, and also on acute myeloid leukemia (AML) patient samples to evaluate anti-VISTA antibody effects on primary tumor material. The functions of three anti-human VISTA antibodies were determined by their IgG isotype backbones. An MLR of healthy donor PBMCs was effectively augmented by anti-VISTA-IgG4-Pro and anti-VISTA-IgG1-WT antibodies, as indicated by increased levels of cytokines, T cell activation markers and T cell proliferation. However, in a culture of unstimulated PBMCs of single healthy donors, only anti-VISTA-IgG1-WT antibodies increased the activation marker HLA-DR on resting myeloid cells, and chemokine levels. Interestingly, interactions with different Fc-receptors were required for these effects, namely CD64 for augmentation of MLR, and CD16 for activation of resting myeloid cells. Furthermore, anti-VISTA-IgG1-KO antibodies had nearly no impact in any model system. Similarly, in AML patient samples, anti-VISTA-antibody on IgG4-Pro backbone, but not on IgG1-KO backbone, increased interactions, as a novel readout of activity, between immune cells and CD34+ AML cancer cells. In conclusion, the immune stimulatory effects of antagonistic anti-VISTA antibodies are defined by the antibody isotype and interaction with different Fc-gamma-receptors, highlighting the importance of understanding these interactions when designing immune stimulatory antibody therapeutics for immuno-oncology applications.


Asunto(s)
Antígenos B7/inmunología , Neoplasias , Receptores Fc , Humanos , Inmunoglobulina G , Leucocitos Mononucleares , Receptores de IgG
4.
Oncoimmunology ; 11(1): 2080328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756842

RESUMEN

Upregulation of inhibitory receptors, such as lymphocyte activation gene-3 (LAG-3), may limit the antitumor activity of therapeutic antibodies targeting the programmed cell death protein-1 (PD-1) pathway. We describe the binding properties of ezabenlimab, an anti-human PD-1 antibody, and BI 754111, an anti-human LAG-3 antibody, and assess their activity alone and in combination. Ezabenlimab bound with high affinity to human PD-1 (KD = 6 nM) and blocked the interaction of PD-1 with PD-L1 and PD-L2. Ezabenlimab dose-dependently increased interferon-γ secretion in human T cells expressing PD-1 in co-culture with PD-L1-expressing dendritic cells. Administration of ezabenlimab to human PD-1 knock-in mice dose-dependently inhibited growth of MC38 tumors. To reduce immunogenicity, ezabenlimab was reformatted from a human IgG4 to a chimeric variant with a mouse IgG1 backbone (BI 905725) for further in vivo studies. Combining BI 905725 with anti-mouse LAG-3 antibodies improved antitumor activity versus BI 905725 monotherapy in the MC38 tumor model. We generated BI 754111, which bound with high affinity to human LAG-3 and prevented LAG-3 interaction with its ligand, major histocompatibility complex class II. In an in vitro model of antigen-experienced memory T cells expressing PD-1 and LAG-3, interferon-γ secretion increased by an average 1.8-fold versus isotype control (p = 0.027) with BI 754111 monotherapy, 6.9-fold (p < 0.0001) with ezabenlimab monotherapy and 13.2-fold (p < 0.0001) with BI 754111 plus ezabenlimab. Overall, ezabenlimab and BI 754111 bound to their respective targets with high affinity and prevented ligand binding. Combining ezabenlimab with BI 754111 enhanced in vitro activity versus monotherapy, supporting clinical investigation of this combination (NCT03156114; NCT03433898).


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Animales , Anticuerpos Bloqueadores , Anticuerpos Monoclonales/farmacología , Estudios Clínicos como Asunto , Inhibidores de Puntos de Control Inmunológico , Interferón gamma , Ligandos , Ratones
5.
Mol Cancer Ther ; 20(1): 96-108, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037135

RESUMEN

Activation of TRAILR2 has emerged as an important therapeutic concept in cancer treatment. TRAILR2 agonistic molecules have only had limited clinical success, to date, due either to lack of efficacy or hepatotoxicity. BI 905711 is a novel tetravalent bispecific antibody targeting both TRAILR2 and CDH17 and represents a novel liver-sparing TRAILR2 agonist specifically designed to overcome the disadvantages of previous strategies. Here, we show that BI 905711 effectively triggered apoptosis in a broad panel of CDH17-positive colorectal cancer tumor cells in vitro. Efficient induction of apoptosis was dependent on the presence of CDH17, as exemplified by the greater than 1,000-fold drop in potency in CDH17-negative cells. BI 905711 demonstrated single-agent tumor regressions in CDH17-positive colorectal cancer xenografts, an effect that was further enhanced upon combination with irinotecan. Antitumor efficacy correlated with induction of caspase activation, as measured in both the tumor and plasma. Effective tumor growth inhibition was further demonstrated across a series of different colorectal cancer PDX models. BI 905711 induced apoptosis in both a cis (same cell) as well as trans (adjacent cell) fashion, translating into significant antitumor activity even in xenograft models with heterogeneous CDH17 expression. In summary, we demonstrate that BI 905711 has potent and selective antitumor activity in CDH17-positive colorectal cancer models both in vitro and in vivo. The high prevalence of over 95% CDH17-positive tumors in patients with colorectal cancer, the molecule preclinical efficacy together with its potential for a favorable safety profile, support the ongoing BI 905711 phase I trial in colorectal cancer and additional CDH17-positive cancer types (NCT04137289).


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Apoptosis , Cadherinas/metabolismo , Neoplasias Colorrectales/patología , Hígado/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Humanos , Hígado/efectos de los fármacos , Ratones , Metástasis de la Neoplasia , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Inducción de Remisión
6.
Oncoimmunology ; 9(1): 1736792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850194

RESUMEN

Despite the success of immunotherapy using checkpoint blockade, many patients with solid tumors remain refractory to these treatments. In human cancer, the experimental options to investigate the specific effects of antibodies blocking inhibitory receptors are limited and it is still unclear which cell types are involved. We addressed the question whether the direct interaction between T cells and tumor cells can be enforced through blocking a set of inhibitory receptors including PD-1, TIM-3, BTLA and LAG-3, blocked either individually or in dual combinations with the anti-PD-1 antibody, and to determine the condition that induces maximal T cell function preventing tumor cell proliferation. Using short-term Melan-A-specific or autologous re-stimulations, checkpoint blockade did not consistently increase cytokine production by tumor-derived expanded T cells. We next set up a 5-day co-culture assay with autologous melanoma cell lines and expanded tumor infiltrating T cells, originating from tumor specimens obtained from 6 different patients. Amongst all combos tested, we observed that blockade of LAG-3 alone, and more strongly when combined with PD-1 blockade, enforced T cell responses and tumor cell growth control. The combination of anti-LAG-3 plus anti-PD-1 acted through CD8 T cells and led to increased IFNγ production and cytotoxic capacity. Our results show that LAG-3 and PD-1 are regulating the direct interaction between tumor cells and autologous T cells, suggesting that therapy effects may be promoted by enhanced access of the corresponding blocking reagents to the tumor microenvironment.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1 , Técnicas de Cocultivo , Humanos , Inmunoterapia , Activación de Linfocitos , Melanoma/tratamiento farmacológico , Microambiente Tumoral
7.
Cancer Cell ; 33(3): 495-511.e12, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29502954

RESUMEN

The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Histona Demetilasas/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Modelos Animales de Enfermedad , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Células Madre/efectos de los fármacos , Células Madre/metabolismo
8.
Int Immunol ; 21(7): 871-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19505890

RESUMEN

Dendritic cells (DC) are key players in the initiation and modulation of adaptive immune responses due to their ability to acquire and present antigen and stimulate T cells. For the induction of effector T cell functions, antigen must be presented by activated DC. In this study, we have compared uptake of antigen by mouse DC in the presence of different Toll-like receptor (TLR) agonists, which are potent inducers of DC activation. Here we show that the reduction in uptake of soluble antigen in the presence of the viral double-stranded RNA (dsRNA) analogues polyinosinic-polycytidylic acid and Ampligen is independent of TLR-mediated DC activation. A reduction in antigen uptake by bone marrow-derived and splenic DC was also observed in response to other RNA homopolymers such as polyinosinic and polyguanylic acids, which are known inhibitors of scavenger receptor-mediated endocytosis. Pinocytosis and mannose receptor-mediated uptake of soluble antigen were not affected by any of the tested nucleic acids. The reduction in antigen uptake by dsRNA did not negatively influence the T cell stimulating properties of the DC. In summary, we conclude that the decrease in antigen endocytosis observed in the presence of a variety of TLR agonists is independent of TLR signalling and is caused by competition for specific surface receptors that are involved in the uptake of these TLR agonists and the antigen.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Células Dendríticas/efectos de los fármacos , Inductores de Interferón/farmacología , Poli I-C/farmacología , ARN Bicatenario/farmacología , Receptores Toll-Like/agonistas , Animales , Antígenos/inmunología , Células Dendríticas/inmunología , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Lipopolisacáridos/farmacología , Activación de Linfocitos/efectos de los fármacos , Receptor de Manosa , Lectinas de Unión a Manosa/inmunología , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/farmacología , Pinocitosis/efectos de los fármacos , Pinocitosis/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Receptores Toll-Like/inmunología
9.
Eur J Immunol ; 38(10): 2740-50, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18825742

RESUMEN

Cancer immunotherapy aims at inducing immune responses against tumour-associated antigens that mediate the eradication of tumour cells. For successful vaccination against antigens expressed by the tumour, the immune system has to be provided with sufficient amounts of these antigens in connection with strong immunostimulatory signals such as toll-like receptor (TLR) ligands. Tumour cells represent a convenient source of relevant tumour-associated antigens but can have suppressive properties. In this study, we explored how different forms of tumour cell material influence the activation of dendritic cells (DC), which play a crucial role in the induction of anti-tumour immune responses. We show that freeze-and-thaw-disrupted tumour cells inhibit DC activation in response to TLR stimulation, a phenomenon that is only partially seen with non-disrupted control cells. This suppression of DC stimulation is independent of tumour cell- and species-specific factors. We tested the hypothesis that phosphatidylserine on cells with disrupted membrane integrity mediates inhibition of TLR-induced DC activation. Our experimental evidence indicates that phosphatidylserine is not involved in the inhibition of TLR-mediated DC activation by freeze-and-thaw-disrupted cells. The inhibitory activity associated with disrupted tumour cells could explain why such preparations are less effective tumour vaccines than apoptotic tumour cells.


Asunto(s)
Células Dendríticas/inmunología , Melanoma Experimental/inmunología , Receptores Toll-Like/inmunología , Animales , Antígeno B7-2/inmunología , Antígeno B7-2/metabolismo , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Congelación , Inmunoterapia , Interleucina-12/biosíntesis , Interleucina-12/inmunología , Interleucina-6/biosíntesis , Interleucina-6/inmunología , Liposomas , Ratones , Ratones Endogámicos C57BL , Neoplasias , Fosfatidilserinas/farmacología , Fosfatidilserinas/fisiología , Receptores Toll-Like/metabolismo , Células Vero
10.
World J Gastroenterol ; 13(44): 5822-31, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17990348

RESUMEN

Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNgamma in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Inmunoterapia/métodos , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/genética , Terapia Genética , Humanos , Inmunización , Escape del Tumor/inmunología
11.
Int J Cancer ; 121(6): 1282-95, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17520674

RESUMEN

Better understanding of the mechanisms that mediate spontaneous immune rejections ought to be important in the quest for improvements in immunotherapy of cancer. A set of intraperitoneal tumors of mesenchymal origin that had been chemically induced in ubiquitously expressing EGFP transgenic mice provided a model in which both T and NK cells were absolutely required for tumor rejection. Tumor cells were traceable because of being fluorescent and readily grafted in RAG1(-/-) immunodeficient mice, whereas they were rejected in a majority of syngeneic C57BL/6 and EGFP-transgenic mice. Tumor-cell clones with the highest EGFP expression tended to be rejected, but a direct involvement of EGFP as the antigen recognized for the immune rejections was ruled out. Rejections were absolutely dependent on NK cells as well as on CD4(+) and CD8(+) T lymphocytes according to selective depletion studies. Furthermore, CD8(+) and CD4(+) T lymphocytes as well as NK cells were detected in the inflammatory infiltrate that mediates tumor rejection along with some DC. The effects of IFN gamma, produced at the tumor site by T and NK lymphocytes, were only required at the malignant cell level and were necessary for tumor eradication. NK recognition of tumor cells was mediated by the NKG2D-activating receptor and blocking its function in vivo partially interfered with rejection. Therefore, complete rejection of these mesenchymal tumors requires a concerted set of activities including direct tumor-cell destruction and IFN gamma production that are mediated by both NK and T cells.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Neoplasias Peritoneales/inmunología , Receptores Inmunológicos/metabolismo , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Mesodermo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Subfamilia K de Receptores Similares a Lectina de Células NK , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Neoplasias Peritoneales/metabolismo , Receptores de Células Asesinas Naturales
12.
Mol Ther ; 14(1): 129-38, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16627004

RESUMEN

Recombinant adenovirus administration gives rise to transgene-independent effects caused by the ability of the vector to activate innate immunity mechanisms. We show that recombinant adenoviruses encoding reporter genes trigger IFN-alpha and IFN-beta transcription from both plasmacytoid and myeloid mouse dendritic cells. Interestingly, IFN-beta and IFN-alpha5 are the predominant transcribed type I IFN genes both in vitro and in vivo. In human peripheral blood leukocytes type I IFNs are induced by adenoviral vectors, with a preponderance of IFN-beta together with IFN-alpha1 and IFN-alpha5 subtypes. Accordingly, functional type I IFN is readily detected in serum samples from human cancer patients who have been treated intratumorally with a recombinant adenovirus encoding thymidine kinase. Despite inducing functional IFN-alpha release in both mice and humans, gene transfer by recombinant adenoviruses is not interfered with by type I IFNs either in vitro or in vivo. Moreover, IFN-alpha does not impair replication of wild-type adenovirus. As a consequence, cancer gene therapy strategies with defective or replicative-competent adenoviruses are not expected to be hampered by the effect of the type I IFNs induced by the vector itself. However, type I IFN might modulate antitumor and antiadenoviral immune responses and thus influence the outcome of gene immunotherapy.


Asunto(s)
Adenoviridae/genética , Expresión Génica/genética , Interferón Tipo I/genética , Transgenes/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/metabolismo , Femenino , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Interferón Tipo I/farmacología , Interferón-alfa/genética , Interferón-alfa/farmacología , Interferón beta/genética , Interferón beta/farmacología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Timidina Quinasa/genética , Transcripción Genética/genética
13.
Cancer Res ; 66(4): 2442-50, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16489051

RESUMEN

Artificially enforced expression of CD80 (B7-1) and CD86 (B7-2) on tumor cells renders them more immunogenic by triggering the CD28 receptor on T cells. The enigma is that such B7s interact with much higher affinity with CTLA-4 (CD152), an inhibitory receptor expressed by activated T cells. We show that unmutated CD80 is spontaneously expressed at low levels by mouse colon carcinoma cell lines and other transplantable tumor cell lines of various tissue origins. Silencing of CD80 by interfering RNA led to loss of tumorigenicity of CT26 colon carcinoma in immunocompetent mice, but not in immunodeficient Rag-/- mice. CT26 tumor cells bind CTLA-4Ig, but much more faintly with a similar CD28Ig chimeric protein, thus providing an explanation for the dominant inhibitory effects on tumor immunity displayed by CD80 at that expression level. Interestingly, CD80-negative tumor cell lines such as MC38 colon carcinoma and B16 melanoma express CD80 at dim levels during in vivo growth in syngeneic mice. Therefore, low CD80 surface expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the inhibitory role described for the dim CD80 expression on immature dendritic cells, providing an explanation for the low levels of CD80 expression described in various human malignancies.


Asunto(s)
Adenocarcinoma/inmunología , Antígeno B7-1/inmunología , Neoplasias del Colon/inmunología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Antígenos CD , Antígenos de Diferenciación/inmunología , Antígenos de Diferenciación/metabolismo , Antígeno B7-1/biosíntesis , Antígeno B7-1/genética , Secuencia de Bases , Antígeno CTLA-4 , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Femenino , Silenciador del Gen , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Transfección
14.
Int J Cancer ; 116(2): 275-81, 2005 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15800914

RESUMEN

In the course of a clinical trial consisting of intratumoral injections of dendritic cells (DCs) transfected to produce interleukin-12, the use of (111)In-labeled tracing doses of DCs showed that most DCs remained inside tumor tissue, instead of migrating out. In search for factors that could explain this retention, it was found that tumors from patients suffering hepatocellular carcinoma, colorectal or pancreatic cancer were producing IL-8 and that this chemokine attracted monocyte-derived dendritic cells that uniformly express both IL-8 receptors CXCR1 and CXCR2. Accordingly, neutralizing antihuman IL-8 monoclonal antibodies blocked the chemotactic attraction of DCs by recombinant IL-8, as well as by the serum of the patients or culture supernatants of human colorectal carcinomas. In addition, tissue culture supernatants of colon carcinoma cells inhibited DC migration induced by MIP-3beta in an IL-8-dependent fashion. IL-8 production in malignant tissue and the responsiveness of DCs to IL-8 are a likely explanation of the clinical images, which suggest retention of DCs inside human malignant lesions. Impairment of DC migration toward lymphoid tissue could be involved in cancer immune evasion.


Asunto(s)
Movimiento Celular , Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Células Dendríticas/inmunología , Interleucina-8/biosíntesis , Interleucina-8/inmunología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Anticuerpos Monoclonales , Quimiotaxis , Humanos , Inmunoterapia , Interleucina-12/biosíntesis , Transfección
15.
Expert Opin Biol Ther ; 5(1): 7-22, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15709906

RESUMEN

Like paratroopers in special operations, dendritic cells (DCs) can be deployed behind the enemy borders of malignant tissue to ignite an antitumour immune response. 'Cross-priming T cell responses' is the code name for their mission, which consists of taking up antigen from transformed cells or their debris, migrating to lymphoid tissue ferrying the antigenic cargo, and meeting specific T cells. This must be accomplished in such an immunogenic manner that specific T lymphocytes would mount a robust enough response as to fully reject the malignancy. To improve their immunostimulating activity, local gene therapy can be very beneficial, either by transfecting DCs with genes enhancing their performance, or by preparing tumour tissue with pro-inflammatory mediators. In addition, endogenous DCs from the tumour host can be attracted into the malignant tissue following transfection of certain chemokine genes into tumour cells. On their side, tumour stroma and malignant cells set up a hostile immunosuppressive environment for artificially released or attracted DCs. This milieu is usually rich in transforming growth factor-beta, vascular endothelial growth factor, and IL-10, -6 and -8, among other substances that diminish DC performance. Several molecular strategies are being devised to interfere with the immunosuppressive actions of these substances and to further enhance the level of anticancer immunity achieved after artificial release of DCs intratumourally.


Asunto(s)
Células Dendríticas/inmunología , Ambiente , Terapia Genética/métodos , Neoplasias/inmunología , Animales , Ingeniería Genética/métodos , Humanos , Neoplasias/genética
16.
J Clin Oncol ; 23(5): 999-1010, 2005 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15598979

RESUMEN

PURPOSE: To evaluate the feasibility and safety of intratumoral injection of autologous dendritic cells (DCs) transfected with an adenovirus encoding interleukin-12 genes (AFIL-12) for patients with metastatic gastrointestinal carcinomas. Secondarily, we have evaluated biologic effects and antitumoral activity. PATIENTS AND METHODS: Seventeen patients with metastatic pancreatic (n = 3), colorectal (n = 5), or primary liver (n = 9) malignancies entered the study. DCs were generated from CD14+ monocytes from leukapheresis, cultured and transfected with AFIL-12 before administration. Doses from 10 x 10(6) to 50 x 10(6) cells were escalated in three cohorts of patients. Patients received up to three doses at 21-day intervals. RESULTS: Fifteen (88%) and 11 of 17 (65%) patients were assessable for toxicity and response, respectively. Intratumoral DC injections were mainly guided by ultrasound. Treatment was well tolerated. The most common side effects were lymphopenia, fever, and malaise. Interferon gamma and interleukin-6 serum concentrations were increased in 15 patients after each treatment, as well as peripheral blood natural killer activity in five patients. DC transfected with AFIL-12 stimulated a potent antibody response against adenoviral capsides. DC treatment induced a marked increase of infiltrating CD8+ T lymphocytes in three of 11 tumor biopsies analyzed. A partial response was observed in one patient with pancreatic carcinoma. Stable disease was observed in two patients and progression in eight patients, with two of the cases fast-progressing during treatment. CONCLUSION: Intratumoral injection of DC transfected with an adenovirus encoding interleukin-12 to patients with metastatic gastrointestinal malignancies is feasible and well tolerated. Further studies are necessary to define and increase clinical efficacy.


Asunto(s)
Adenoviridae/genética , Carcinoma/secundario , Células Dendríticas/inmunología , Neoplasias Gastrointestinales/secundario , Interleucina-12/metabolismo , Ingeniería de Tejidos , Adulto , Anciano , Linfocitos T CD8-positivos/inmunología , Carcinoma/terapia , Estudios de Cohortes , Estudios de Factibilidad , Femenino , Fiebre/etiología , Neoplasias Gastrointestinales/terapia , Humanos , Inyecciones Intralesiones , Interferón gamma/sangre , Interleucina-6/sangre , Células Asesinas Naturales/inmunología , Linfopenia/etiología , Masculino , Persona de Mediana Edad , Proteínas Recombinantes , Inducción de Remisión , Seguridad , Transfección
17.
Int J Cancer ; 110(1): 51-60, 2004 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15054868

RESUMEN

Intralesional administration of cultured dendritic cells (DCs) engineered to produce IL-12 by in vitro infection with recombinant adenovirus frequently displays eradicating efficacy against established subcutaneous tumors derived from the CT26 murine colon carcinoma cell line. The elicited response is mainly mediated by cytolytic T lymphocytes. In order to search for strategies that would enhance the efficacy of the therapeutic procedure against less immunogenic tumors, we moved onto malignancies derived from the inoculation of MC38 colon cancer cells that are less prone to undergo complete regression upon a single intratumoral injection of IL-12-secreting DCs. In this model, we found that repeated injections of such DCs, as opposed to a single injection, achieved better efficacy against both the injected and a distantly implanted tumor; that the use of semiallogeneic DCs that are mismatched in one MHC haplotype with the tumor host showed slightly better efficacy; and that the combination of this treatment with systemic injections of immunostimulatory anti-CD137 (4-1BB) monoclonal antibody achieved potent combined effects that correlated with the antitumor immune response measured in IFN-gamma ELISPOT assays. The elicited systemic immune response eradicates concomitant untreated lesions in most cases. Curative efficacy was also found against some tumors established for 2 weeks when these strategies were used in combination. These are preclinical pieces of evidence to be considered in order to enhance the therapeutic benefit of a strategy that is currently being tested in clinical trials. Supplementary Material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias del Colon/terapia , Células Dendríticas/inmunología , Terapia Genética , Interleucina-12/genética , Isoantígenos/inmunología , Receptores de Factor de Crecimiento Nervioso/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Adenoviridae/genética , Animales , Antígenos CD , Movimiento Celular , Interferón gamma/biosíntesis , Interleucina-12/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores de Factor de Crecimiento Nervioso/antagonistas & inhibidores , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Transfección , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral
18.
Clin Cancer Res ; 9(15): 5454-64, 2003 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-14654524

RESUMEN

Immunotherapeutic monoclonal antibodies (mAbs) can be defined as those that exert their functions by tampering with immune system cell molecules, causing an enhancement of antitumor immune responses. Some of these antibodies are agonistic ligands for surface receptors involved in the activation of lymphocytes and/or antigen-presenting cells, whereas others are antagonists of mechanisms that normally limit the intensity of immune reactions. Several mAbs of this category have been described to display in vivo antitumor activity in mouse models. Only anti-CTLA-4 (CD152) mAb has entered clinical trials, but the preclinical effects described for anti-CD40, anti-CD137 (4-1BB), anti-CD102 (intercellular adhesion molecule-2), and regulatory T cell-depleting mAbs should lead to their prompt clinical development. Their use in combination with immunizations against tumor antigens has been reported to be endowed with synergistic properties. This new group of antitumor agents holds promise for at least additive effects with conventional therapies of cancer and deserves intensive translational research.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias/inmunología , Antígenos CD/inmunología , Antígenos de Diferenciación/inmunología , Antígeno CTLA-4 , Moléculas de Adhesión Celular/inmunología , Humanos , Inmunidad Celular , Modelos Inmunológicos , Receptores de Factor de Crecimiento Nervioso/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral
19.
Clin Cancer Res ; 9(10 Pt 1): 3546-54, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-14506140

RESUMEN

PURPOSE: Systemic treatment with an anti-ICAM-2 monoclonal antibody (mAb; EOL4G8) eradicates certain established mouse tumors through a mechanism dependent on the potentiation of a CTL-mediated response. However, well-established tumors derived from the MC38 colon carcinoma cell line were largely refractory to this treatment as well as to intratumor injection of a recombinant adenovirus encoding interleukin-12 (IL-12; AdCMVIL-12). We sought to design combined therapy strategies with AdCMVIL-12 plus anti-ICAM-2 mAbs and to identify their mechanism of action. EXPERIMENTAL DESIGN: Analysis of antitumor and toxic effects were performed with C57BL/6 mice bearing established MC38 tumors. Anti-ovalbumin T-cell receptor transgenic mice and tumors transfected with this antigen were used for in vitro and in vivo studies on activation-induced cell death (AICD) of CD8(+) T cells. RESULTS: Combined treatment with various systemic doses of EOL4G8 mAb plus intratumor injection of AdCMVIL-12 induced complete regression of MC38 tumors treated 7 days after implantation. Unfortunately, most of such mice succumbed to a systemic inflammatory syndrome that could be prevented if IFN-gamma activity were neutralized once tumors had been rejected. Importantly, dose reduction of EOL4G8 mAb opened a therapeutic window (complete cure of 9 of 18 cases without toxicity). We also show that ICAM-2 ligation by EOL4G8 mAb on activated CTLs prevents AICD, thus extending IFN-gamma production. CONCLUSIONS: Combination of intratumor gene transfer of IL-12and systemic anti-ICAM-2 mAb display synergistic therapeutic and toxic effects. CTL life extension resulting from AICD inhibition by anti-ICAM-2 mAbs is the plausible mechanism of action.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos CD/química , Antígenos CD/inmunología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/inmunología , Técnicas de Transferencia de Gen , Interleucina-12/metabolismo , Linfocitos T/citología , Adenoviridae/genética , Animales , Linfocitos T CD8-positivos/metabolismo , Muerte Celular , Línea Celular Tumoral , Separación Celular , Reactivos de Enlaces Cruzados/farmacología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trasplante de Neoplasias , Péptidos/química , Linfocitos T Citotóxicos/metabolismo , Factores de Tiempo
20.
Exp Hematol ; 30(12): 1355-64, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12482496

RESUMEN

Expansion and activation of cytolytic T lymphocytes bearing high-affinity T-cell receptors specific for tumor antigens is a major goal of active cancer immunotherapy. Physiologically, T cells receive promitotic and activating signals from endogenous professional antigen-presenting cells (APC) rather than directly from malignant cells. This phenomenon fits with the broader concept of cross-presentation that earlier was demonstrated for minor histocompatibility and viral antigens. Many mechanisms have been found to be capable of transferring antigenic material from malignant cells to APC so that it can be processed and subsequently presented by MHC class I molecules expressed on APC. Dendritic cells (DC) are believed to be the most relevant APC mediating cross-presentation because they can take up antigens from apoptotic, necrotic, and even intact tumor cells. There exist specific molecular mechanisms that ensure this transfer of antigenic material: 1) opsonization of apoptotic bodies; 2) receptors for released heat shock proteins carrying peptides processed intracellularly; 3) Fc receptors that uptake immunocomplexes and immunoglobulins; and 4) pinocytosis. DC have the peculiar capability of reentering the exogenously captured material into the MHC class I pathway. Exploitation of these pieces of knowledge is achieved by providing DC with complex mixtures of tumor antigens ex vivo and by agents and procedures that promote infiltration of malignant tissue by DC. The final outcome of DC cross-presentation could be T-cell activation (cross-priming) but also, and importantly, T-cell tolerance contingent upon the activation/maturation status of DC. Artificial enhancement of tumor antigen cross-presentation and control of the immune-promoting status of the antigen-presenting DC will have important therapeutic implications in the near future.


Asunto(s)
Presentación de Antígeno/fisiología , Células Dendríticas/inmunología , Células Neoplásicas Circulantes/inmunología , Animales , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...