Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Parasitol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704296
2.
Sci Rep ; 14(1): 12466, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816418

RESUMEN

Blood-feeding behavior has independently evolved in arthropods multiple times. Unlike hard ticks, soft ticks employ a rapid-feeding strategy for hematophagy, and there are comparatively limited studies on the transcriptomes of these organisms. This study investigates the soft tick Ornithodoros hermsi, conducting histopathological examinations at bitten skin sites and tick whole-body transcriptomic analyses across various developmental and feeding stages, including larvae, 1st-nymphal, and 2nd-nymphal stages. The results revealed the ability of O. hermsi to induce skin hemorrhage at the bite sites. Transcriptomic analyses identified three consistent transcriptional profiles: unfed, early-fed (6 h, 12 h, 24 h), and late-fed (5 days). The unfed profile exhibited high transcriptional activity across most of the functional classes annotated. In contrast, early-fed stages exhibited decreased expression of most functional classes, except for the unknown, which is highly expressed. Finally, transcriptional expression of most functional classes increased in the late-fed groups, resembling the baseline expression observed in the unfed groups. These findings highlight intense pre-feeding transcriptional activity in O. hermsi ticks, aligning with their rapid-feeding strategy. Moreover, besides shedding light on the temporal dynamics of key pathways during blood meal processing and tick development, this study contributes significantly to the transcriptome repertoire of a medically relevant soft tick species with relatively limited prior knowledge.


Asunto(s)
Ornithodoros , Fiebre Recurrente , Transcriptoma , Animales , Ornithodoros/genética , Ornithodoros/crecimiento & desarrollo , Fiebre Recurrente/microbiología , Larva/genética , Ninfa/genética , Ninfa/crecimiento & desarrollo , Perfilación de la Expresión Génica , Conducta Alimentaria
3.
PLoS Pathog ; 20(2): e1012032, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38394332

RESUMEN

Lyme disease (LD) caused by Borrelia burgdorferi is among the most important human vector borne diseases for which there is no effective prevention method. Identification of tick saliva transmission factors of the LD agent is needed before the highly advocated tick antigen-based vaccine could be developed. We previously reported the highly conserved Ixodes scapularis (Ixs) tick saliva serpin (S) 17 (IxsS17) was highly secreted by B. burgdorferi infected nymphs. Here, we show that IxsS17 promote tick feeding and enhances B. burgdorferi colonization of the host. We show that IxsS17 is not part of a redundant system, and its functional domain reactive center loop (RCL) is 100% conserved in all tick species. Yeast expressed recombinant (r) IxsS17 inhibits effector proteases of inflammation, blood clotting, and complement innate immune systems. Interestingly, differential precipitation analysis revealed novel functional insights that IxsS17 interacts with both effector proteases and regulatory protease inhibitors. For instance, rIxsS17 interacted with blood clotting proteases, fXII, fX, fXII, plasmin, and plasma kallikrein alongside blood clotting regulatory serpins (antithrombin III and heparin cofactor II). Similarly, rIxsS17 interacted with both complement system serine proteases, C1s, C2, and factor I and the regulatory serpin, plasma protease C1 inhibitor. Consistently, we validated that rIxsS17 dose dependently blocked deposition of the complement membrane attack complex via the lectin complement pathway and protected complement sensitive B. burgdorferi from complement-mediated killing. Likewise, co-inoculating C3H/HeN mice with rIxsS17 and B. burgdorferi significantly enhanced colonization of mouse heart and skin organs in a reverse dose dependent manner. Taken together, our data suggests an important role for IxsS17 in tick feeding and B. burgdorferi colonization of the host.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Serpinas , Ratones , Animales , Humanos , Serpinas/metabolismo , Saliva/metabolismo , Péptido Hidrolasas , Ratones Endogámicos C3H , Proteínas del Sistema Complemento , Endopeptidasas , Sistema Inmunológico/metabolismo
4.
Parasit Vectors ; 17(1): 36, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281054

RESUMEN

BACKGROUND: When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS: Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS: Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS: Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.


Asunto(s)
Rhipicephalus , Animales , Femenino , Bovinos , Rhipicephalus/fisiología , Saliva/química , Proteómica , Proteínas de Artrópodos/metabolismo , Proteínas y Péptidos Salivales/metabolismo
5.
Ticks Tick Borne Dis ; 15(2): 102304, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38159432

RESUMEN

Rhipicephalus microplus, a highly host-specific tick that primarily feeds on cattle, posing a significant threat to livestock production. The investigation of tick physiology is crucial for identifying potential targets in tick control. Of particular interest adult female ticks undergo a significant expansion of the midgut during feeding, leading to an over 100-fold increase in body weight. Beyond the functions of storing and digesting blood meals, the tick midgut plays a crucial role in acquiring and transmitting pathogens. However, our understanding of tick midgut physiology remains limited. In this study we conducted a comprehensive longitudinal transcriptome analysis of the midgut from adult female R. microplus ticks collected at various feeding stages, providing an overview of the transcriptional modulation in this organ as feeding progress. By employing a de novo assembly approach followed by coding-sequences (CDS) extraction, 60,599 potential CDS were identified. In preparation for functional annotation and differential expression analysis, transcripts that showed an average transcript per million (TPM) ≥ 3 in at least one of the biological conditions were extracted. This selection process resulted in a total of 10,994 CDS, which were categorized into 24 functional classes. Notably, our differential expression analysis revealed three main transcriptional profiles. In the first one, representing the slow-feeding stage, the most abundant functional classes were the "protein synthesis" and "secreted" groups, reflecting the highly active state of the tick midgut. The second profile partially accounts for the rapid-feeding stage, in which a high number of differentially expressed transcripts was observed. Lastly, the third transcriptional profile represents post-detached ticks. Notably the highest number of modulated transcripts was observed up to 48 h post-detachment (hpd), however no major differences was observed up to 168 hpd. Overall, the data presented here offers a temporal insight into tick midgut physiology, contributing to the identification of potential targets for the development of anti-tick control strategies.


Asunto(s)
Rhipicephalus , Femenino , Animales , Bovinos , Rhipicephalus/genética , Perfilación de la Expresión Génica , Sistema Digestivo/metabolismo
6.
J Invest Dermatol ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37996063

RESUMEN

The skin is the first host tissue that the tick mouthparts, tick saliva, and a tick-borne pathogen contact during feeding. Tick salivary glands have evolved a complex and sophisticated pharmacological arsenal, consisting of bioactive molecules, to assist blood feeding and pathogen transmission. In this work, persulcatin, a multifunctional molecule that targets keratinocyte function and hemostasis, was identified from Ixodes persulcatus female ticks. The recombinant persulcatin was expressed and purified and is a 25-kDa acidic protein with 2 Kunitz-type domains. Persulcatin is a classical tight-binding competitive inhibitor of proteases, targeting plasmin (Ki: 28 nM) and thrombin (Ki: 115 nM). It blocks plasmin generation on keratinocytes and inhibits their migration and matrix protein degradation; downregulates matrix metalloproteinase 2 and matrix metalloproteinase 9; and causes a delay in blood coagulation, endothelial cell activation, and thrombin-induced fibrinocoagulation. It interacts with exosite I of thrombin and reduces thrombin-induced endothelial cell permeability by inhibiting vascular endothelial-cadherin disruption. The multifaceted roles of persulcatin as an inhibitor and modulator within the plasminogen-plasmin system and thrombin not only unveil further insights into the intricate mechanisms governing wound healing but also provide a fresh perspective on the intricate interactions between ticks and their host organisms.

7.
Ticks Tick Borne Dis ; 14(6): 102251, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708803

RESUMEN

Studies on the transcriptional control of gene expression are crucial to understand changes in organism's physiological or cellular conditions. To obtain reliable data on mRNA amounts and the estimation of gene expression levels, it is crucial to normalize the target gene with one or more internal reference gene(s). However, the use of constitutive genes as reference genes is controversial, as their expression patterns are sometimes more complex than previously thought. In various arthropod vectors, including ticks, several constitutive genes have been identified by studying gene expression in different tissues and life stages. The cattle tick Rhipicephalus microplus is a major vector for several pathogens and is widely distributed in tropical and subtropical regions globally. Tick developmental physiology is an essential aspect of research, particularly embryogenesis, where many important developmental events occur, thus the identification of stable reference genes is essential for the interpretation of reliable gene expression data. This study aimed to identify and select R. microplus housekeeping genes and evaluate their stability during embryogenesis. Reference genes used as internal control in molecular assays were selected based on previous studies. These genes were screened by quantitative PCR (qPCR) and tested for gene expression stability during embryogenesis. Results demonstrated that the relative stability of reference genes varied at different time points during the embryogenesis. The GeNorm tool showed that elongation factor 1α (Elf1a) and ribosomal protein L4 (Rpl4) were the most stable genes, while H3 histone family 3A (Hist3A) and ribosomal protein S18 (RpS18) were the least stable. The NormFinder tool showed that Rpl4 was the most stable gene, while the ranking of Elf1a was intermediate in all tested conditions. The BestKeeper tool showed that Rpl4 and cyclophilin A (CycA) were the more and less stable genes, respectively. These data collectively demonstrate that Rpl4, Elf1a, and GAPDH are suitable internal controls for normalizing qPCR during R. microplus embryogenesis. These genes were consistently identified as the most stable in various analysis methods employed in this study. Thus, findings presented in this study offer valuable information for the study of gene expression during embryogenesis in R. microplus.


Asunto(s)
Rhipicephalus , Animales , Rhipicephalus/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vectores Artrópodos , Bioensayo , Desarrollo Embrionario/genética
8.
Front Immunol ; 14: 1163367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469515

RESUMEN

Background: Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. Materials and methods: A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. Results: Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. Conclusion: The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.


Asunto(s)
Hemostáticos , Simuliidae , Ratones , Humanos , Animales , Células Endoteliales , Hemostasis , Antiinflamatorios/farmacología , Inflamación , Proteínas y Péptidos Salivales/farmacología , Mamíferos
9.
Sci Rep ; 13(1): 11360, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443274

RESUMEN

The hematophagy behavior has evolved independently several times within the Arthropoda phylum. Interestingly, the process of acquiring a blood meal in ticks is considerably distinct from that observed in other blood-feeding arthropods. Instead of taking seconds to minutes to complete a blood meal, an adult female Ixodes scapularis tick can remain attached to its host for numerous days. During this extended feeding period, the tick undergoes drastic morphological changes. It is well established that the tick midgut plays a pivotal role not only in blood meal digestion but also in pathogen acquisition and transmission. However, our understanding of the underlying molecular mechanisms involved in these events remains limited. To expedite tick research, we conducted a comprehensive longitudinal RNA-sequencing of the tick midgut before, during, and after feeding. By collecting ticks in different feeding stages (unfed, slow feeding, rapid feeding, and early post-detached), we obtained a comprehensive overview of the transcripts present in each stage and the dynamic transcriptional changes that occur between them. This provides valuable insights into tick physiology. Additionally, through unsupervised clustering, we identified transcripts with similar patterns and stage-specific sequences. These findings serve as a foundation for selecting targets in the development of anti-tick control strategies and facilitate a better understanding of how blood feeding and pathogen infection impact tick physiology.


Asunto(s)
Ixodes , Animales , Femenino , Ixodes/genética , Transcriptoma , Sistema Digestivo , Perfilación de la Expresión Génica , Conducta Alimentaria
10.
Front Immunol ; 14: 1116324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756125

RESUMEN

Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.


Asunto(s)
Ixodes , Serpinas , Ratones , Animales , Serpinas/metabolismo , Células Endoteliales/metabolismo , Ixodes/metabolismo , Quimiocinas , Monocitos/metabolismo , Tripsina , Antiinflamatorios/farmacología
11.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675071

RESUMEN

Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel ß-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.


Asunto(s)
Cistatinas , Serpinas , Garrapatas , Animales , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/metabolismo , Saliva/metabolismo , Cistatinas/metabolismo
12.
Ticks Tick Borne Dis ; 14(3): 102123, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36716581

RESUMEN

Acaricide resistance is a global problem that has impacts worldwide. Tick populations with broad resistance to all commercially available acaricides have been reported. Since resistance selection in ticks and their role in pathogen transmission to animals and humans result in important economic and public health burden, it is essential to develop new strategies for their control (i.e., novel chemical compounds, vaccines, biological control). The synganglion is the tick central nervous system and it is responsible for synthesizing and releasing signaling molecules with different physiological functions. Synganglion proteins are the targets of the majority of available acaricides. In this review we provide an overview of the mode-of-action and resistance mechanisms against neurotoxic acaricides in ticks, as well as putative target sites in synganglion, as a supporting tool to identify new target proteins and to develop new strategies for tick control.


Asunto(s)
Acaricidas , Enfermedades de los Bovinos , Ixodidae , Rhipicephalus , Infestaciones por Garrapatas , Vacunas , Animales , Humanos , Bovinos , Acaricidas/farmacología , Control de Ácaros y Garrapatas , Infestaciones por Garrapatas/prevención & control , Infestaciones por Garrapatas/veterinaria , Enfermedades de los Bovinos/prevención & control
13.
Mol Cell Endocrinol ; 561: 111827, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36494014

RESUMEN

AIM: In this study, we investigated how platelets and aorta contribute to the creation and maintenance of a prothrombotic state in an experimental model of postmenopausal hypertension in ovariectomized rats. METHODS: Bilateral ovariectomy was performed in both 14-week-old female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. The animals were kept in phytoestrogen free diet. Vascular parameters, platelet, coagulation and aortic prothrombotic functions and mechanisms were assessed. RESULTS: Exacerbated platelet aggregation was observed in both SHR and WKY animals after ovariectomy. The mechanism was related to aortic COX2 downregulation and reduction in AMP, ADP, and ATP hydrolysis in serum and platelets. A procoagulant potential was observed in plasma from ovariectomized rats and this was confirmed by kallikrein and factor Xa generation in aortic rings. Aortic rings derived from ovariectomized SHR presented a greater thrombin generation capacity compared to equivalent rings from WKY animals. The mechanism involved tissue factor and PAR-1 upregulation as well as an increase in extrinsic coagulation and fibrinolysis markers in aorta and platelets. Aortic smooth muscle cells pre-treated with a plasma pool derived from estrogen-depleted animals developed a procoagulant profile with tissue factor upregulation. This procoagulant profile was dependent on inflammatory signalling, since NFκB inhibition attenuated the procoagulant activity and tissue factor expression. CONCLUSIONS: A prothrombotic phenotype was observed in both WKY and SHR ovariectomized rats being associated with platelet hyperreactivity and tissue factor upregulation in aorta and platelets. The mechanism involves proinflammatory signalling that supports greater thrombin generation in aorta and vascular smooth muscle cells.


Asunto(s)
Hipertensión , Trombina , Ratas , Femenino , Animales , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Trombina/metabolismo , Trombina/farmacología , Tromboplastina , Hipertensión/metabolismo , Aorta , Estrógenos
14.
Sci Rep ; 12(1): 21300, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494396

RESUMEN

Ixodes scapularis long-term blood feeding behavior is facilitated by a tick secreted bio adhesive (tick cement) that attaches tick mouthparts to skin tissue and prevents the host from dislodging the attached tick. Understanding tick cement formation is highly sought after as its disruption will prevent tick feeding. This study describes proteins that form the inner core layer of I. scapularis tick cement as disrupting these proteins will likely stop formation of the outer cortical layer. The inner core cement layer completes formation by 24 h of tick attachment. Thus, we used laser-capture microdissection to isolate cement from cryosections of 6 h and 24 h tick attachment sites and to distinguish between early and late inner core cement proteins. LC-MS/MS analysis identified 138 tick cement proteins (TCPs) of which 37 and 35 were unique in cement of 6 and 24 h attached ticks respectively. We grouped TCPs in 14 functional categories: cuticular protein (16%), tick specific proteins of unknown function, cytoskeletal proteins, and enzymes (13% each), enzymes (10%), antioxidant, glycine rich, scaffolding, heat shock, histone, histamine binding, proteases and protease inhibitors, and miscellaneous (3-6% each). Gene ontology analysis confirm that TCPs are enriched for bio adhesive properties. Our data offer insights into tick cement bonding patterns and set the foundation for understanding the molecular basis of I. scapularis tick cement formation.


Asunto(s)
Ixodes , Animales , Ixodes/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Proteínas de Artrópodos/genética
15.
Immunohorizons ; 6(6): 373-383, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35738824

RESUMEN

Blood-feeding arthropods secrete potent salivary molecules, which include platelet aggregation inhibitors, vasodilators, and anticoagulants. Among these molecules, Alboserpin, the major salivary anticoagulant from the mosquito vector Aedes albopictus, is a specific inhibitor of the human coagulation factor Xa (FXa). In this study, we investigated the anti-inflammatory properties of Alboserpin, in vitro and in vivo. In vitro, Alboserpin inhibited FXa-induced protease-activated receptor (PAR)-1, PAR-2, PAR-3, VCAM, ICAM, and NF-κB gene expression in primary dermal microvascular endothelial cells. Alboserpin also prevented FXa-stimulated ERK1/2 gene expression and subsequent inflammatory cytokine release (MCP-1, TNF-α, IL-6, IL-8, IL-1ß, IL-18). In vivo, Alboserpin reduced paw edema induced by FXa and subsequent release of inflammatory cytokines (CCL2, MCP-1, IL-1α, IL-6, IL-1ß). Alboserpin also reduced FXa-induced endothelial permeability in vitro and in vivo. These findings show that Alboserpin is a potent anti-inflammatory molecule, in vivo and in vitro, and may play a significant role in blood feeding.


Asunto(s)
Aedes , Aedes/metabolismo , Animales , Antiinflamatorios/farmacología , Anticoagulantes/farmacología , Citocinas , Células Endoteliales/metabolismo , Humanos , Interleucina-6 , Mosquitos Vectores , Receptor PAR-1/genética , Receptor PAR-1/metabolismo
16.
Front Microbiol ; 13: 868575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591999

RESUMEN

In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction.

17.
Ticks Tick Borne Dis ; 13(3): 101910, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35121230

RESUMEN

The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.


Asunto(s)
Ixodidae , Neuropéptidos , Rhipicephalus , Animales , Femenino , Ixodidae/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/metabolismo , Péptidos , Rhipicephalus/genética , Rhipicephalus/metabolismo , Transcriptoma
18.
J Biol Chem ; 297(5): 101322, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688666

RESUMEN

The salivary glands of the flea Xenopsylla cheopis, a vector of the plague bacterium, Yersinia pestis, express proteins and peptides thought to target the hemostatic and inflammatory systems of its mammalian hosts. Past transcriptomic analyses of salivary gland tissue revealed the presence of two similar peptides (XC-42 and XC-43) having no extensive similarities to any other deposited sequences. Here we show that these peptides specifically inhibit coagulation of plasma and the amidolytic activity of α-thrombin. XC-43, the smaller of the two peptides, is a fast, tight-binding inhibitor of thrombin with a dissociation constant of less than 10 pM. XC-42 exhibits similar selectivity as well as kinetic and binding properties. The crystal structure of XC-43 in complex with thrombin shows that despite its substrate-like binding mode, XC-43 is not detectably cleaved by thrombin and that it interacts with the thrombin surface from the enzyme catalytic site through the fibrinogen-binding exosite I. The low rate of hydrolysis was verified in solution experiments with XC-43, which show the substrate to be largely intact after 2 h of incubation with thrombin at 37 °C. The low rate of XC-43 cleavage by thrombin may be attributable to specific changes in the catalytic triad observable in the crystal structure of the complex or to extensive interactions in the prime sites that may stabilize the binding of cleavage products. Based on the increased arterial occlusion time, tail bleeding time, and blood coagulation parameters in rat models of thrombosis XC-43 could be valuable as an anticoagulant.


Asunto(s)
Anticoagulantes/química , Antitrombinas/química , Proteínas de Insectos/química , Glándulas Salivales/química , Proteínas y Péptidos Salivales/química , Trombina , Xenopsylla/química , Animales , Humanos , Ratas , Trombina/antagonistas & inhibidores , Trombina/química , Xenopsylla/metabolismo
19.
BMC Genomics ; 22(1): 152, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663385

RESUMEN

BACKGROUND: Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS: We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION: Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Cromatografía Liquida , Peróxido de Hidrógeno , Ninfa , Conejos , Saliva , Espectrometría de Masas en Tándem
20.
Parasit Vectors ; 13(1): 603, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261663

RESUMEN

BACKGROUND: Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes Rocky Mountain spotted fever, a life-threatening illness. To obtain an insight into the vector-pathogen interactions, we assessed the effects of infection with R. rickettsii on the proteome cells of the tick embryonic cell line BME26. METHODS: The proteome of BME26 cells was determined by label-free high-performance liquid chromatography coupled with tandem mass spectrometry analysis. Also evaluated were the effects of infection on the activity of caspase-3, assessed by the hydrolysis of a synthetic fluorogenic substrate in enzymatic assays, and on the exposition of phosphatidyserine, evaluated by live-cell fluorescence microscopy after labeling with annexin-V. Finally, the effects of activation or inhibition of caspase-3 activity on the growth of R. rickettsii in BME26 cells was determined. RESULTS: Tick proteins of different functional classes were modulated in a time-dependent manner by R. rickettsii infection. Regarding proteins involved in apoptosis, certain negative regulators were downregulated at the initial phase of the infection (6 h) but upregulated in the middle of the exponential phase of the bacterial growth (48 h). Microorganisms are known to be able to inhibit apoptosis of the host cell to ensure their survival and proliferation. We therefore evaluated the effects of infection on classic features of apoptotic cells and observed DNA fragmentation exclusively in noninfected cells. Moreover, both caspase-3 activity and phosphatidylserine exposition were lower in infected than in noninfected cells. Importantly, while the activation of caspase-3 exerted a detrimental effect on rickettsial proliferation, its inhibition increased bacterial growth. CONCLUSIONS: Taken together, these results show that R. rickettsii modulates the proteome and exerts an inhibitory effect on apoptosis in tick cellsthat seems to be important to ensure cell colonization.


Asunto(s)
Apoptosis , Rickettsia rickettsii/fisiología , Garrapatas/citología , Garrapatas/microbiología , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Interacciones Huésped-Patógeno , Garrapatas/genética , Garrapatas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...