Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 33: 57-74, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37435135

RESUMEN

Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.

2.
Br J Pharmacol ; 179(1): 125-140, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453744

RESUMEN

BACKGROUND AND PURPOSE: The Arp2/3 multiprotein complex regulates branched polymerisation of the actin cytoskeleton and may contribute to collagen synthesis and fibrogenesis in the lung. EXPERIMENTAL APPROACH: Expression of Arp2/3 components was assessed in human lung fibroblasts and in the bleomycin-induced pulmonary fibrosis model in mice. The Arp2/3 complex was repressed with the allosteric inhibitor CK666 and with interfering RNAs targeting the ARP2, ARP3 and ARPC2 subunits (siARP2, siARP3 and siARPC2) in CCD-16Lu human lung fibroblasts in vitro. Mice received daily intraperitoneal injections of CK666 from the 7th to the 14th day after tracheal bleomycin instillation. KEY RESULTS: Expression of Arp2/3 complex subunits mRNAs was increased in fibroblasts treated with TGF-ß1 and in the lungs of bleomycin-treated mice compared with controls. In vitro, CK666 and siARPC2 inhibited cell growth and TGF-ß1-induced α-smooth muscle actin (ACTA2) and collagen-1 (COL1) expression. CK666 also decreased ACTA2 and COL1 expression in unstimulated cells. CK666 reduced Akt phosphorylation and repressed phospho-GSK3ß, ß-catenin and MRTF-A levels in unstimulated fibroblasts. In vivo, CK666 reduced levels of both procollagen-1 and insoluble collagen in bleomycin-treated mice. CONCLUSION AND IMPLICATIONS: Expression of the Arp2/3 complex was increased in profibrotic environments in vitro and in vivo. Inhibition of the Arp2/3 complex repressed ACTA2 and COL1 expression and repressed an Akt/phospho-GSK3ß/ß-catenin/MRTF-A pathway in lung fibroblasts. CK666 exerted antifibrotic properties in the lung in vivo. Inhibition of the Arp2/3 complex could represent an interesting new therapy for idiopathic pulmonary fibrosis and other fibrotic interstitial lung diseases.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Diferenciación Celular , Fibroblastos/metabolismo , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
3.
Front Endocrinol (Lausanne) ; 12: 691658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354670

RESUMEN

Obesity is a major public health concern at the origin of many pathologies, including cancers. Among them, the incidence of gastro-intestinal tract cancers is significantly increased, as well as the one of hormone-dependent cancers. The metabolic changes caused by overweight mainly with the development of adipose tissue (AT), insulin resistance and chronic inflammation induce hormonal and/or growth factor imbalances, which impact cell proliferation and differentiation. AT is now considered as the main internal source of endocrine disrupting chemicals (EDCs) representing a low level systemic chronic exposure. Some EDCs are non-metabolizable and can accumulate in AT for a long time. We are chronically exposed to low doses of EDCs able to interfere with the endocrine metabolism of the body. Importantly, several EDCs have been involved in the genesis of obesity affecting profoundly the physiology of AT. In parallel, EDCs have been implicated in the development of cancers, in particular hormone-dependent cancers (prostate, testis, breast, endometrium, thyroid). While it is now well established that AT secretes adipocytokines that promote tumor progression, it is less clear whether they can initiate cancer. Therefore, it is important to better understand the effects of EDCs, and to investigate the buffering effect of AT in the context of progression but also initiation of cancer cells using adequate models recommended to uncover and validate these mechanisms for humans. We will review and argument here the potential role of AT as a crosstalk between EDCs and hormone-dependent cancer development, and how to assess it.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Neoplasias/inducido químicamente , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Humanos , Modelos Biológicos
4.
Elife ; 102021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33884955

RESUMEN

To adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR. On the other hand, UBTD1, via the ubiquitination of Sequestosome 1 (SQSTM1/p62) by RNF26 and endolysosome positioning, participates in the lysosomal degradation of EGFR. The coordination of these two ubiquitin-dependent processes contributes to the control of the duration of the EGFR signal. Moreover, we showed that UBTD1 depletion exacerbates EGFR signaling and induces cell proliferation emphasizing a hitherto unknown function of UBTD1 in EGFR-driven human cell proliferation.


Asunto(s)
Ceramidas/metabolismo , Lisosomas/enzimología , Neoplasias de la Próstata/enzimología , Ubiquitinas/metabolismo , Ceramidasa Ácida/genética , Ceramidasa Ácida/metabolismo , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Cinética , Lisosomas/genética , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteolisis , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Ubiquitinación , Ubiquitinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA