Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0297547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625963

RESUMEN

Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 µM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 µM) and BAP (2,2 µM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.


Asunto(s)
Fabaceae , Fabaceae/genética , Fabaceae/microbiología , Agrobacterium tumefaciens/genética , Simbiosis/genética , Fenotipo , Verduras/genética , Transformación Genética , Plantas Modificadas Genéticamente
2.
Mycorrhiza ; 29(6): 637-648, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31732817

RESUMEN

Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.


Asunto(s)
Basidiomycota , Micorrizas , Brasil , Raíces de Plantas , Árboles
3.
Antonie Van Leeuwenhoek ; 112(1): 23-29, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30306463

RESUMEN

Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.


Asunto(s)
Bacterias Fijadoras de Nitrógeno/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Bacterias Fijadoras de Nitrógeno/clasificación , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/aislamiento & purificación , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/fisiología , Transducción de Señal
4.
BMC Genomics ; 19(1): 105, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29378510

RESUMEN

BACKGROUND: Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. RESULTS: In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. CONCLUSION: The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.


Asunto(s)
Burkholderia/genética , Cupriavidus/genética , Mimosa/microbiología , Nodulación de la Raíz de la Planta/genética , Rhizobium/genética , Burkholderia/metabolismo , Cupriavidus/metabolismo , Perfilación de la Expresión Génica , Genoma Bacteriano , Interacciones Microbianas , Raíces de Plantas/fisiología , Rhizobium/metabolismo , Simbiosis/genética
5.
Syst Appl Microbiol ; 41(2): 122-130, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29310897

RESUMEN

Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria. Eleven genotypic groups were distinguished based on the combined PCR/RFLP of 16S rRNA, 16S-23S rRNA intergenic spacer and symbiotic (nodC and nodD-F) genes and further confirmed by multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and rpoB), the 16S rRNA gene and the nodulation genes nodC and nodD. Of the 11 genotypes, 5 were dominant and 2 were the most represented. Most of the strains shared high nodD gene sequence similarity with Rhizobium leguminosarum sv. viciae; their nodC sequences were similar to both Rhizobium leguminosarum and Rhizobium laguerreae. Sequence analyses of the 16S-23S rRNA intergenic spacer showed that all the new strains were phylogenetically related to those described from Vicia sativa and V. faba in several African, European, American and Asian countries, with which they form a group related to Rhizobium leguminosarum. Phylogenetic analysis based on MLSA of 16S rRNA, recA, atpD and rpoB genes allowed the affiliations of strain AM11R to Rhizobium leguminosarum sv. viciae and of strains EB1 and ES8 to Rhizobium laguerreae. In addition, two separate clades with <97% similarity may represent two novel genospecies within the genus Rhizobium.


Asunto(s)
Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium/clasificación , Vicia faba/microbiología , Argelia , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Genes Bacterianos , Tipificación de Secuencias Multilocus , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Simbiosis
6.
Plant Cell Environ ; 41(9): 2008-2020, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29059477

RESUMEN

Tripartite interactions between legumes and their root symbionts (rhizobia and arbuscular mycorrhizal fungi, AMF) are poorly understood, although it is well established that only specific combinations of symbionts lead to optimal plant growth. A classic example in which to investigate such interactions is the Brazilian legume tree Piptadenia gonoacantha (Caesalpinioideae), for which efficient nodulation has been described as dependent on the presence of AMF symbiosis. In this study, we compared the nodulation behaviour of several rhizobial strains with or without AMF inoculation, and performed analyses on nodulation, nodule cytology, N-fixing efficiency, and plant growth response. Nodulation of P. gonoacantha does not rely on the presence of AMF, but mycorrhization was rhizobial strain-dependent, and nodule effectiveness and plant growth were dependent on the presence of specific combinations of rhizobial strains and AMF. The co-occurrence of both symbionts within efficient nodules and the differentiation of bacteroids within nodule cells were also demonstrated. Novel close interactions and interdependency for the establishment and/or functioning of these symbioses were also revealed in Piptadenia, thanks to immunocytochemical analyses. These data are discussed in terms of the evolutionary position of the newly circumscribed mimosoid clade within the Caesalpinioid subfamily and its relative proximity to non-nodulated (but AMF-associated) basal subfamilies.


Asunto(s)
Fabaceae/fisiología , Micorrizas/fisiología , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Biodiversidad , Filogenia , Simbiosis , Árboles/fisiología
7.
PLoS One ; 12(11): e0187758, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29155841

RESUMEN

Soil fungi associated with plant roots, notably ectomycorrhizal (EcM) fungi, are central in above- and below-ground interactions in Mediterranean forests. They are a key component in soil nutrient cycling and plant productivity. Yet, major disturbances of Mediterranean forests, particularly in the Southern Mediterranean basin, are observed due to the greater human pressures and climate changes. These disturbances highly impact forest cover, soil properties and consequently the root-associated fungal communities. The implementation of efficient conservation strategies of Mediterranean forests is thus closely tied to our understanding of root-associated fungal biodiversity and environmental rules driving its diversity and structure. In our study, the root-associated fungal community of Q. suber was analyzed using high-throughput sequencing across three major Moroccan cork oak habitats. Significant differences in root-associated fungal community structures of Q. suber were observed among Moroccan cork oak habitats (Maâmora, Benslimane, Chefchaoun) subjected to different human disturbance levels (high to low disturbances, respectively). The fungal community structure changes correlated with a wide range of soil properties, notably with pH, C:N ratio (P = 0.0002), and available phosphorus levels (P = 0.0001). More than 90 below-ground fungal indicators (P < 0.01)-either of a type of habitat and/or a soil property-were revealed. The results shed light on the ecological significance of ubiquitous ectomycorrhiza (Tomentella, Russula, Cenococcum), and putative sclerotia-associated/ericoid mycorrhizal fungal taxa (Cladophialophora, Oidiodendron) in the Moroccan cork oak forest, and their intraspecific variability regarding their response to land use and soil characteristics.


Asunto(s)
Fijación del Nitrógeno/genética , Filogenia , Raíces de Plantas/microbiología , Quercus/microbiología , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Biodiversidad , Ecosistema , Bosques , Secuenciación de Nucleótidos de Alto Rendimiento , Marruecos , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Quercus/crecimiento & desarrollo , Quercus/metabolismo , Suelo/química , Microbiología del Suelo
8.
Front Plant Sci ; 8: 2249, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29367857

RESUMEN

Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum. The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation.

9.
Environ Microbiol ; 16(7): 2099-111, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24131520

RESUMEN

Variations in the patterns of diversity of symbionts have been described worldwide on Mimosa pudica, a pan-tropical invasive species that interacts with both α and ß-rhizobia. In this study, we investigated if symbiont competitiveness can explain these variations and the apparent prevalence of ß- over α-rhizobia. We developed an indirect method to measure the proportion of nodulation against a GFP reference strain and tested its reproducibility and efficiency. We estimated the competitiveness of 54 strains belonging to four species of ß-rhizobia and four of α-rhizobia, and the influence of the host genotype on their competitiveness. Our results were compared with biogeographical patterns of symbionts and host varieties. We found: (i) a strong strain effect on competitiveness largely explained by the rhizobial species, with Burkholderia phymatum being the most competitive species, followed by B. tuberum, whereas all other species shared similar and reduced levels of competitiveness; (ii) plant genotype can increase the competitiveness of Cupriavidus taiwanensis. The latter data support the likelihood of the strong adaptation of C. taiwanensis with the M. pudica var. unijuga and help explain its prevalence as a symbiont of this variety over Burkholderia species in some environments, most notably in Taiwan.


Asunto(s)
Burkholderia/clasificación , Cupriavidus/clasificación , Mimosa/microbiología , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/clasificación , Simbiosis , Burkholderia/genética , Cupriavidus/genética , Genotipo , Especies Introducidas , Mimosa/fisiología , Datos de Secuencia Molecular , Filogeografía , Nodulación de la Raíz de la Planta/fisiología , Reproducibilidad de los Resultados , Rhizobium/genética , Taiwán
10.
PLoS One ; 8(5): e63478, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23691052

RESUMEN

Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the "Piptadenia group". We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from ß to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species.


Asunto(s)
Burkholderia/aislamiento & purificación , Fabaceae/microbiología , Simbiosis , Brasil , Burkholderia/clasificación , Filogenia
11.
FEMS Microbiol Ecol ; 81(3): 618-35, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22512707

RESUMEN

Rhizobia are soil bacteria able to develop a nitrogen-fixing symbiosis with legumes. They are taxonomically spread among the alpha and beta subclasses of the Proteobacteria. Mimosa pudica, a tropical invasive weed, has been found to have an affinity for beta-rhizobia, including species within the Burkholderia and Cupriavidus genera. In this study, we describe the diversity of M. pudica symbionts in the island of New Caledonia, which is characterized by soils with high heavy metal content, especially of Ni. By using a plant-trapping approach on four soils, we isolated 96 strains, the great majority of which belonged to the species Cupriavidus taiwanensis (16S rRNA and recA gene phylogenies). A few Rhizobium strains in the newly described species Rhizobium mesoamericanum were also isolated. The housekeeping and nod gene phylogenies supported the hypothesis of the arrival of the C. taiwanensis and R. mesoamericanum strains together with their host at the time of the introduction of M. pudica in New Caledonia (NC) for its use as a fodder. The C. taiwanensis strains exhibited various tolerances to Ni, Zn and Cr, suggesting their adaptation to the specific environments in NC. Specific metal tolerance marker genes were found in the genomes of these symbionts, and their origin was investigated by phylogenetic analyses.


Asunto(s)
Biodiversidad , Cupriavidus/clasificación , Mimosa/microbiología , Rhizobium/clasificación , Microbiología del Suelo , Aciltransferasas/genética , Proteínas Bacterianas/genética , Cupriavidus/genética , Cupriavidus/aislamiento & purificación , Metales Pesados/metabolismo , Nueva Caledonia , Fijación del Nitrógeno , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Simbiosis
12.
FEMS Microbiol Ecol ; 79(2): 487-503, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22093060

RESUMEN

The genetic diversity of 221 Mimosa pudica bacterial symbionts trapped from eight soils from diverse environments in French Guiana was assessed by 16S rRNA PCR-RFLP, REP-PCR fingerprints, as well as by phylogenies of their 16S rRNA and recA housekeeping genes, and by their nifH, nodA and nodC symbiotic genes. Interestingly, we found a large diversity of beta-rhizobia, with Burkholderia phymatum and Burkholderia tuberum being the most frequent and diverse symbiotic species. Other species were also found, such as Burkholderia mimosarum, an unnamed Burkholderia species and, for the first time in South America, Cupriavidus taiwanensis. The sampling site had a strong influence on the diversity of the symbionts sampled, and the specific distributions of symbiotic populations between the soils were related to soil composition in some cases. Some alpha-rhizobial strains taxonomically close to Rhizobium endophyticum were also trapped in one soil, and these carried two copies of the nodA gene, a feature not previously reported. Phylogenies of nodA, nodC and nifH genes showed a monophyly of symbiotic genes for beta-rhizobia isolated from Mimosa spp., indicative of a long history of interaction between beta-rhizobia and Mimosa species. Based on their symbiotic gene phylogenies and legume hosts, B. tuberum was shown to contain two large biovars: one specific to the mimosoid genus Mimosa and one to South African papilionoid legumes.


Asunto(s)
Burkholderia/genética , Mimosa/microbiología , Secuencia de Bases , Burkholderia/clasificación , Burkholderia/aislamiento & purificación , Cupriavidus/clasificación , Cupriavidus/crecimiento & desarrollo , Guyana Francesa , Variación Genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Suelo , América del Sur , Simbiosis
13.
Immunogenetics ; 58(4): 269-82, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16572321

RESUMEN

Cynomolgus monkey is one of the macaque species currently used as an animal model for experimental surgery and medicine, in particular, to experiment new drugs or therapy protocols designed for the prevention of allograft rejection. In this field, it is of utmost importance to select histoincompatible recipient-donor pairs. One way to ensure incompatibility between donor and recipient is to check their major histocompatibility complex (MHC) genotypes at the loci playing a determinant role in histocompatibility. We report in this paper on the cynomolgus monkey DRB polymorphism evidenced by sequencing of amplified exon 2 separated either by denaturing gradient gel electrophoresis (DGGE), or by cloning. By the study of 253 unrelated animals from two populations (Mauritius and The Philippines), we characterized 50 exon 2 sequences among which 28 were identical to sequences already reported in Macaca fascicularis or other macaque species (Macaca mulatta, Macaca nemestrina). By cloning and sequencing DRB cDNA, we revealed two additional DRB alleles. Out of the 20 haplotypes that we defined here, only two were found in both populations. The functional impact of DR incompatibility was studied in vitro by mixed lymphocyte culture.


Asunto(s)
Exones , Genotipo , Antígenos HLA-DR/genética , Macaca fascicularis/genética , Polimorfismo Genético , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clonación Molecular/métodos , Electroforesis/métodos , Haplotipos , Linfocitos/inmunología , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA