RESUMEN
During the current global outbreak of mpox (formerly monkeypox), atypical features were frequently described outside endemic areas, raising concerns around differential diagnosis. In this study, we included 372 adult patients who had clinical signs consistent with mpox and who were screened using non-variola orthopoxvirus specific quantitative polymerase chain reaction (PCR) between 15 May and 15 November 2022 at the University Hospital Institute Méditerranée Infection, Marseille, France. At least one clinical sample was positive for 143 (38.4%) of these patients and 229 (61.6%) were negative. Clinically, patients who had mpox presented more frequently with systemic signs (69.9% vs. 31.0%, p < 10-6 ) including fever (51.0% vs. 30.1%, p < 10-3 ), myalgia (33.5% vs. 17.9%, p = 0.002), and lymphadenopathy (38.5% vs. 13.1%, p < 10-6 ). Among the patients who were negative for the non-variola orthopoxvirus, an alternative diagnosis was identified in 58 of them (25.3%), including chickenpox (n = 30, 13.1%), syphilis (n = 9, 4%), bacterial skin infection (n = 8, 3.5%), gonococcus (n = 5, 2.2%), HSV infection (n = 5, 2.2%), and histoplasmosis (n = 1, 0.4%). Overall, in the current outbreak, we show that mpox has a poorly specific clinical presentation. This reinforces the importance of microbiological confirmation. In symptomatic patients who are negative for the monkeypox virus by PCR, a broad differential diagnosis should be maintained.
Asunto(s)
Varicela , Infección Hospitalaria , Mpox , Orthopoxvirus , Adulto , Humanos , Estudios Retrospectivos , Diagnóstico DiferencialRESUMEN
Background and Objectives: During the COVID-19 pandemic, patient care was mainly organized around the hospital. Pre-hospital care has, to our knowledge, never been evaluated. We aimed to study the impact of pre-hospital pathways on hospitalization during the last part of the pandemic. Materials and Methods: This was a monocentric, retrospective analysis of prospectively collected medical records. Data from patients admitted to our institute between 1 February and 7 March 2022 were analyzed. The primary outcomes were defined as the number of hospitalizations, resuscitations, and deaths at the time of interview and in the subsequent 30 days. The main explanatory variables were times from onset of symptoms to care, age, gender, News2 score, comorbidities, and pre-hospital pathways and their duration. Results: Three pre-hospital pathways were identified: a pathway in which the patient consults a general practitioner for a test (PHP1); a pathway in which the patient consults for care (PHP2); and no pre-hospital pathway and direct admission to hospital (PHP3). Factors independently associated with outcome (hospitalization) were being male (OR 95% CI; 2.21 (1.01-4.84), p = 0,04), News2 score (OR 95% CI; 2.04 (1.65-2.51), p < 0.001), obesity (OR 95% CI; 3.45 (1.48-8.09), p = 0.005), D-dimers > 0.5 µg/mL (OR 95% CI; 3.45 (1.47-8.12), p = 0.005), and prolonged time from symptoms to hospital care (PHP duration) (OR 95% CI; 1.07 (1.01-1.14), p = 0.03). All things being equal, patients with a "PHP2" pre-hospital pathway had a higher probability of hospitalization compared to those with a "PHP3" pre-hospital pathway (OR 95% CI; 4.31 (1.48-12.55), p = 0.007). Conclusions: Along with recognized risk factors such as gender, News 2 score, and obesity, the patient's pre-hospital pathway is an important risk factor associated with hospitalization.
Asunto(s)
COVID-19 , Pandemias , Humanos , Masculino , Femenino , Estudios Retrospectivos , Hospitalización , Hospitales , Obesidad/epidemiología , Obesidad/terapiaRESUMEN
A large outbreak of Monkeypox virus (MPXV) infections has arisen in May 2022 in nonendemic countries. Here, we performed DNA metagenomics using next-generation sequencing with Illumina or Nanopore technologies for clinical samples from MPXV-infected patients diagnosed between June and July 2022. Classification of the MPXV genomes and determination of their mutational patterns were performed using Nextclade. Twenty-five samples from 25 patients were studied. A MPXV genome was obtained for 18 patients, essentially from skin lesions and rectal swabbing. All 18 genomes were classified in clade IIb, lineage B.1, and we identified four B.1 sublineages (B.1.1, B.1.10, B.1.12, B.1.14). We detected a high number of mutations (range, 64-73) relatively to a 2018 Nigerian genome (genome GenBank Accession no. NC_063383.1), which were harbored by a large part of a set of 3184 MPXV genomes of lineage B.1 recovered from GenBank and Nextstrain; and we detected 35 mutations relatively to genome ON563414.3 (a B.1 lineage reference genome). Nonsynonymous mutations occurred in genes encoding central proteins, among which transcription factors and core and envelope proteins, and included two mutations that would truncate a RNA polymerase subunit and a phospholipase d-like protein, suggesting an alternative start codon and gene inactivation, respectively. A large majority (94%) of nucleotide substitutions were G > A or C > U, suggesting the action of human APOBEC3 enzymes. Finally, >1000 reads were identified as from Staphylococcus aureus and Streptococcus pyogenes for 3 and 6 samples, respectively. These findings warrant a close genomic monitoring of MPXV to get a better picture of the genetic micro-evolution and mutational patterns of this virus, and a close clinical monitoring of skin bacterial superinfection in monkeypox patients.
Asunto(s)
Mpox , Sobreinfección , Humanos , Monkeypox virus/genética , Genoma Viral , Silenciador del Gen , Desaminasas APOBEC/genéticaRESUMEN
We enrolled 136 patients with laboratory-confirmed monkeypox during June 4-August 31, 2022, at the University Hospital Institute Méditerranée Infection in Marseille, France. The median patient age was 36 years (interquartile range 31-42 years). Of 136 patients, 125 (92%) were men who have sex with men, 15 (11%) reported previous smallpox vaccinations, and 21 (15.5%) were HIV-positive. The most frequent lesion locations were the genitals (68 patients, 53%), perianal region (65 patients, 49%), and oral/perioral area (22 patients, 17%). Lesion locations largely corresponded with the route of contamination. Most (68%) patients had isolated anal, genital, or oral lesions when they were first seen, including 56 (61%) who had >1 positive site without a visible lesion. Concurrent sexually transmitted infections were diagnosed in 19 (15%) patients, and 7 patients (5%) were asymptomatic. We recommend vaccination campaigns, intensified testing for sexually transmitted infections, and increased contact tracing to control the ongoing monkeypox outbreak.
Asunto(s)
Mpox , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Masculino , Humanos , Adulto , Femenino , Mpox/epidemiología , Mpox/diagnóstico , Homosexualidad Masculina , Enfermedades de Transmisión Sexual/epidemiología , Estudios de CohortesRESUMEN
Objective: The COVID-19 corona virus disease outbreak is globally challenging health systems and societies. Its diagnosis relies on molecular methods, with drawbacks revealed by mass screening. Upregulation of neutrophil CD64 or monocyte CD169 has been abundantly reported as markers of bacterial or acute viral infection, respectively. We evaluated the sensitivity of an easy, one-step whole blood flow cytometry assay to measure these markers within 10 min, as a potential screening test for COVID-19 patients. Methods: Patients (n = 177) with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were tested on 10 µL blood and results were compared with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Results: We observed 98% and 100% sensitivity in early-stage (n = 52) and asymptomatic patients (n = 9), respectively. Late-stage patients, who presented for a second control RT-qPCR, were negative for both assays in most cases. Conversely, neutrophil CD64 expression was unchanged in 75% of cases, without significant differences between groups. Conclusion: Monocyte CD169 evaluation was highly sensitive for detecting SARS-CoV-2 infection in first-presentation patients; and it returns to basal level upon infection clearance. The potential ease of fingerprick collection, minimal time-to-result, and low cost rank this biomarker measurement as a potential viral disease screening tool, including COVID-19. When the virus prevalence in the tested population is usually low (1%-10%), such an approach could increase the testing capacity 10 to 100-fold, with the same limited molecular testing resources, which could focus on confirmation purposes only.
RESUMEN
The SARS-CoV-2 21K/BA.1, 21L/BA.2, and BA.3 Omicron variants have recently emerged worldwide. To date, the 21L/BA.2 Omicron variant has remained very minority globally but became predominant in Denmark instead of the 21K/BA.1 variant. Here, we describe the first cases diagnosed with this variant in south-eastern France. We identified 13 cases using variant-specific qPCR and next-generation sequencing between 28/11/2021 and 31/01/2022, the first two cases being diagnosed in travelers returning from Tanzania. Overall, viral genomes displayed a mean (±standard deviation) number of 65.9 ± 2.5 (range, 61-69) nucleotide substitutions and 31.0 ± 8.3 (27-50) nucleotide deletions, resulting in 49.6 ± 2.2 (45-52) amino acid substitutions (including 28 in the spike protein) and 12.4 ± 1.1 (12-15) amino acid deletions. Phylogeny showed the distribution in three different clusters of these genomes, which were most closely related to genomes from England and South Africa, from Singapore and Nepal, or from France and Denmark. Structural predictions highlighted a significant enlargement and flattening of the surface of the 21L/BA.2 N-terminal domain of the spike protein compared to that of the 21K/BA.1 Omicron variant, which may facilitate initial viral interactions with lipid rafts. Close surveillance is needed at global, country, and center scales to monitor the incidence and clinical outcome of the 21L/BA.2 Omicron variant.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Mutación , Nucleótidos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
SARS-CoV-2 has caused a large outbreak since its emergence in December 2019. COVID-19 diagnosis became a priority so as to isolate and treat infected individuals in order to break the contamination chain. Currently, the reference test for COVID-19 diagnosis is the molecular detection (RT-qPCR) of the virus from nasopharyngeal swab (NPS) samples. Although this sensitive and specific test remains the gold standard, it has several limitations, such as the invasive collection method, the relative high cost and the duration of the test. Moreover, the material shortage to perform tests due to the discrepancy between the high demand for tests and the production capacities puts additional constraints on RT-qPCR. Here, we propose a PCR-free method for diagnosing SARS-CoV-2 based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling and machine learning (ML) models from salivary samples. Kinetic saliva samples were collected at enrollment and ten and thirty days later (D0, D10 and D30), to assess the classification performance of the ML models compared to the molecular tests performed on NPS specimens. Spectra were generated using an optimized protocol of saliva collection and successive quality control steps were developed to ensure the reliability of spectra. A total of 360 averaged spectra were included in the study. At D0, the comparison of MS spectra from SARS-CoV-2 positive patients (n = 105) with healthy healthcare controls (n = 51) revealed nine peaks that significantly distinguished the two groups. Among the five ML models tested, support vector machine with linear kernel (SVM-LK) provided the best performance on the training dataset (accuracy = 85.2%, sensitivity = 85.1%, specificity = 85.3%, F1-Score = 85.1%). The application of the SVM-LK model on independent datasets confirmed its performances with 88.9% and 80.8% of correct classification for samples collected at D0 and D30, respectively. Conversely, at D10, the proportion of correct classification had fallen to 64.3%. The analysis of saliva samples by MALDI-TOF MS and ML appears as an interesting supplementary tool for COVID-19 diagnosis, despite the mitigated results obtained for convalescent patients (D10).
RESUMEN
The origin of SARS-CoV-2 is still the subject of a controversial debate. The natural origin theory is confronted to the laboratory leak theory. The latter is composite and comprises contradictory theories, one being the leak of a naturally occurring virus and the other the leak of a genetically engineered virus. The laboratory leak theory is essentially based on a publication by Rahalkar and Bahulikar in 2020 linking SARS-CoV-2 to the Mojiang mine incident in 2012 during which six miners fell sick and three died. We analyzed the clinical reports. The diagnosis is not that of COVID-19 or SARS. SARS-CoV-2 was not present in the Mojiang mine. We also bring arguments against the laboratory leak narrative.
Asunto(s)
COVID-19 , Accidentes , Humanos , Laboratorios , SARS-CoV-2RESUMEN
Background: Electronic hand hygiene surveillance systems are developing and considered to be more reliable than direct observation for hand hygiene monitoring. However, none have the capability to assess compliance in complex nursing care. Materials and Methods: We combined two different technologies, a hand hygiene monitoring system (radiofrequency identification, RFID) and a nursing care recorder at the bedside, and we merge their data to assess hand hygiene performance during nursing. Nursing tasks were classified as standard task procedures or aseptic task procedures corresponding to moment 2 among the five moments for hand hygiene recommended by the WHO. All statistical analyses were performed using R, version 3.6.2. For mixed models, the package "lme4" was used. Results: From the merged database over the 2-year study period, 30,164 nursing tasks were identified for analysis, 25,633 were classified as standard task procedures, and 4,531 were classified as aseptic task procedures for nursing care. Hand disinfection with an alcohol-based solution was not detected with our system in 42.5% of all the recorded tasks, 37% of all the aseptic task procedures, and 47.1% of all the standard task procedures for nursing (p = 0.0362), indicating that WHO moment 2 was not respected in 37% of mandatory situations. Conclusion: Using a combination of different technologies, we were able to assess hand hygiene performance in the riskiest circumstances.
RESUMEN
We evaluated the age-specific mortality of unselected adult outpatients infected with SARS-CoV-2 treated early in a dedicated COVID-19 day hospital and we assessed whether the use of hydroxychloroquine (HCQ) + azithromycin (AZ) was associated with improved survival in this cohort. A retrospective monocentric cohort study was conducted in the day hospital of our center from March to December 2020 in adults with PCR-proven infection who were treated as outpatients with a standardized protocol. The primary endpoint was 6-week mortality, and secondary endpoints were transfer to the intensive care unit and hospitalization rate. Among 10,429 patients (median age, 45 [IQR 32-57] years; 5597 [53.7%] women), 16 died (0.15%). The infection fatality rate was 0.06% among the 8315 patients treated with HCQ+AZ. No deaths occurred among the 8414 patients younger than 60 years. Older age and male sex were associated with a higher risk of death, ICU transfer, and hospitalization. Treatment with HCQ+AZ (0.17 [0.06-0.48]) was associated with a lower risk of death, independently of age, sex and epidemic period. Meta-analysis evidenced consistency with 4 previous outpatient studies (32,124 patients-Odds ratio 0.31 [0.20-0.47], I2 = 0%). Early ambulatory treatment of COVID-19 with HCQ+AZ as a standard of care is associated with very low mortality, and HCQ+AZ improve COVID-19 survival compared to other regimens.
Asunto(s)
Atención Ambulatoria , Antivirales/uso terapéutico , Azitromicina/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Intervención Médica Temprana , Hidroxicloroquina/uso terapéutico , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Antivirales/efectos adversos , Azitromicina/efectos adversos , COVID-19/diagnóstico , COVID-19/mortalidad , Quimioterapia Combinada , Femenino , Francia , Hospitalización , Humanos , Hidroxicloroquina/efectos adversos , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores Sexuales , Factores de Tiempo , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: A previous study demonstrated the performance of the Salivette® (SARSTEDT, Numbrecht, Germany) as a homogeneous saliva collection system to diagnose COVID-19 by RT-qPCR, notably for symptomatic and asymptomatic patients. However, for convalescent patients, the corroboration of molecular detection of SARS-CoV-2 in paired nasopharyngeal swabs (NPS) and saliva samples was unsatisfactory. OBJECTIVES: The aim of the present work was to assess the concordance level of SARS-CoV-2 detection between paired sampling of NPSs and saliva collected with Salivette® at two time points, with ten days of interval. RESULTS: A total of 319 paired samples from 145 outpatients (OP) and 51 healthcare workers (HW) were collected. Unfortunately, at day ten, 73 individuals were lost to follow-up, explaining some kinetic missing data. Due to significant waiting rates at hospitals, most of the patients ate and/or drank while waiting for their turn. Consequently, mouth washing was systematically proposed prior to saliva collection. None of the HW were diagnosed as SARS-CoV-2 positive using NPS or saliva specimens at both time points (n = 95) by RT-qPCR. The virus was detected in 56.3% (n = 126/224) of the NPS samples from OP, but solely 26.8% (n = 60/224) of the paired saliva specimens. The detection of the internal cellular control, the human RNase P, in more than 98% of the saliva samples, underlined that the low sensitivity of saliva specimens (45.2%) for SARS-CoV-2 detection was not attributed to an improper saliva sample storing or RNA extraction. CONCLUSIONS: This work revealed that mouth washing decreased viral load of buccal cavity conducting to impairment of SARS-CoV-2 detection. Viral loads in saliva neo-produced appeared insufficient for molecular detection of SARS-CoV-2. At the time when saliva tests could be a rapid, simple and non-invasive strategy to assess large scale schoolchildren in France, the determination of the performance of saliva collection becomes imperative to standardize procedures.
RESUMEN
A commercially available isothermal amplification of SARS-CoV-2 RNA was applied to self-collected saliva samples using dry dental cotton rolls, which were held in the mouth for two minutes. Of 212 tests, isothermal amplification yielded three (0.14%) invalid results, 120 (56.6%) positive results and 89 (42%) negative results. Compared to reference RT-PCR assays routinely performed simultaneously on nasopharyngeal swabs, excluding the three invalid isothermal amplification assays and one RT-PCR invalid assay, these figures indicated that 119/123 (96.7%) samples were positive in both methods and 85/85 samples were negative in both methods. Four positive buccal swabs which were missed by the isothermal amplification, exhibited Ct values of 26-34 in reference RT-PCR assays. Positive isothermal amplification detection was achieved in less than 10 min. Supervision of the self-sampling procedure was key to achieve these performances. These data support the proposal to use the protocol reported in this paper, including supervised buccal self-sampling, to screen people suspected of having COVID-19 at the point of care.
RESUMEN
Background: The gold standard for COVID-19 diagnosis relies on quantitative reverse-transcriptase polymerase-chain reaction (RT-qPCR) from nasopharyngeal swab (NPS) specimens, but NPSs present several limitations. The simplicity, low invasive and possibility of self-collection of saliva imposed these specimens as a relevant alternative for SARS-CoV-2 detection. However, the discrepancy of saliva test results compared to NPSs made of its use controversial. Here, we assessed Salivettes®, as a standardized saliva collection device, and compared SARS-CoV-2 positivity on paired NPS and saliva specimens. Methods: A total of 303 individuals randomly selected among those investigated for SARS-CoV-2 were enrolled, including 30 (9.9%) patients previously positively tested using NPS (follow-up group), 90 (29.7%) mildly symptomatic and 183 (60.4%) asymptomatic. Results: The RT-qPCR revealed a positive rate of 11.6% (n = 35) and 17.2% (n = 52) for NPSs and saliva samples, respectively. The sensitivity and specificity of saliva samples were 82.9% and 91.4%, respectively, using NPS as reference. The highest proportion of discordant results concerned the follow-up group (33.3%). Although the agreement exceeded 90.0% in the symptomatic and asymptomatic groups, 17 individuals were detected positive only in saliva samples, with consistent medical arguments. Conclusion Saliva collected with Salivette® was more sensitive for detecting symptomatic and pre-symptomatic infections.
RESUMEN
INTRODUCTION: The SARS-CoV-2 pandemic has been associated with the occurrence since summer 2020 of several viral variants that overlapped or succeeded each other in time. Those of current concern harbor mutations within the spike receptor binding domain (RBD) that may be associated with viral escape to immune responses. In our geographical area a viral variant we named Marseille-4 harbors a S477â¯N substitution in this RBD. MATERIALS AND METHODS: We aimed to implement an in-house one-step real-time reverse transcription-PCR (qPCR) assay with a hydrolysis probe that specifically detects the SARS-CoV-2 Marseille-4 variant. RESULTS: All 6 cDNA samples from Marseille-4 variant strains identified in our institute by genome next-generation sequencing (NGS) tested positive using our Marseille-4 specific qPCR, whereas all 32 cDNA samples from other variants tested negative. In addition, 39/42 (93 %) respiratory samples identified by NGS as containing a Marseille-4 variant strain and 0/26 samples identified as containing non-Marseille-4 variant strains were positive. Finally, 2018/3960 (51%) patients SARS-CoV-2-diagnosed in our institute, 10/277 (3.6 %) respiratory samples collected in Algeria, and none of 207 respiratory samples collected in Senegal, Morocco, or Lebanon tested positive using our Marseille-4 specific qPCR. DISCUSSION: Our in-house qPCR system was found reliable to detect specifically the Marseille-4 variant and allowed estimating it is involved in about half of our SARS-CoV-2 diagnoses since December 2020. Such approach allows the real-time surveillance of SARS-CoV-2 variants, which is warranted to monitor and assess their epidemiological and clinical characterics based on comprehensive sets of data.
Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , COVID-19/virología , Humanos , SARS-CoV-2/aislamiento & purificaciónRESUMEN
BACKGROUND: QTc interval monitoring, for the prevention of drug-induced arrhythmias is necessary, especially in the context of coronavirus disease 2019 (COVID-19). For the provision of widespread use, surrogates for 12lead ECG QTc assessment may be useful. This prospective observational study compared QTc duration assessed by artificial intelligence (AI-QTc) (Cardiologs®, Paris, France) on smartwatch singlelead electrocardiograms (SW-ECGs) with those measured on 12lead ECGs, in patients with early stage COVID-19 treated with a hydroxychloroquine-azithromycin regimen. METHODS: Consecutive patients with COVID-19 who needed hydroxychloroquine-azithromycin therapy, received a smartwatch (Withings Move ECG®, Withings, France). At baseline, day-6 and day-10, a 12lead ECG was recorded, and a SW-ECG was transmitted thereafter. Throughout the drug regimen, a SW-ECG was transmitted every morning at rest. Agreement between manual QTc measurement on a 12lead ECG and AI-QTc on the corresponding SW-ECG was assessed by the Bland-Altman method. RESULTS: 85 patients (30 men, mean age 38.3 ± 12.2 years) were included in the study. Fair agreement between manual and AI-QTc values was observed, particularly at day-10, where the delay between the 12lead ECG and the SW-ECG was the shortest (-2.6 ± 64.7 min): 407 ± 26 ms on the 12lead ECG vs 407 ± 22 ms on SW-ECG, bias -1 ms, limits of agreement -46 ms to +45 ms; the difference between the two measures was <50 ms in 98.2% of patients. CONCLUSION: In real-world epidemic conditions, AI-QTc duration measured by SW-ECG is in fair agreement with manual measurements on 12lead ECGs. Following further validation, AI-assisted SW-ECGs may be suitable for QTc interval monitoring. REGISTRATION: ClinicalTrial.govNCT04371744.
Asunto(s)
Arritmias Cardíacas/diagnóstico , Inteligencia Artificial , Tratamiento Farmacológico de COVID-19 , Electrocardiografía , Síndrome de QT Prolongado , Adulto , Arritmias Cardíacas/inducido químicamente , Azitromicina/efectos adversos , Azitromicina/uso terapéutico , Femenino , Humanos , Hidroxicloroquina/efectos adversos , Hidroxicloroquina/uso terapéutico , Síndrome de QT Prolongado/epidemiología , Masculino , Persona de Mediana Edad , PandemiasRESUMEN
Human papillomaviruses (HPV) play a key role in promoting human anogenital cancers. Current high-risk HPV screening or diagnosis tests involve cytological or molecular techniques mostly based on qualitative HPV DNA detection. Here, we describe the development of a rapid quantitative polymerase chain reaction (qPCR) detection test of HPV16 and HPV18 oncogenes (E6 and E7) normalized on human gene encoding GAPDH. Optimized qPCR parameters were defined, and analytical specificities were validated. The limit of detection was 101 for all genes tested. Assay performances were evaluated on clinical samples (n = 96). Concordance between the Xpert HPV assay and the triplex assay developed here was 93.44% for HPV16 and 73.58% for HPV18. HPV co-infections were detected in 15 samples. The systems developed in the present study can be used in complement to traditional HPV tests for specifically validating the presence of HPV16 and/or HPV18. It can also be used for the follow-up of patients with confirmed infection and at risk of developing lesions, through the quantification of E6 and E7 oncogene expression (mRNA) normalized on the GAPDH expression levels.
Asunto(s)
Alphapapillomavirus/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Papillomavirus/diagnóstico , ADN Viral/genética , Proteínas de Unión al ADN/genética , Femenino , Humanos , Proteínas Oncogénicas Virales/genética , Oncogenes/genética , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , ARN Mensajero/genética , Proteínas Represoras/genética , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: In Marseille, France, the COVID-19 incidence evolved unusually with several successive epidemic phases. The second outbreak started in July, was associated with North Africa, and involved travelers and an outbreak on passenger ships. This suggested the involvement of a new viral variant. METHODS: We sequenced the genomes from 916 SARS-CoV-2 strains from COVID-19 patients in our institute. The patients' demographic and clinical features were compared according to the infecting viral variant. RESULTS: From June 26th to August 14th, we identified a new viral variant (Marseille-1). Based on genome sequences (n = 89) or specific qPCR (n = 53), 142 patients infected with this variant were detected. It is characterized by a combination of 10 mutations located in the nsp2, nsp3, nsp12, S, ORF3a, ORF8 and N/ORF14 genes. We identified Senegal and Gambia, where the virus had been transferred from China and Europe in February-April as the sources of the Marseille-1 variant, which then most likely reached Marseille through Maghreb when French borders reopened. In France, this variant apparently remained almost limited to Marseille. In addition, it was significantly associated with a milder disease compared to clade 20A ancestor strains, in univariate analysis. CONCLUSION: Our results demonstrate that SARS-CoV-2 can genetically diversify rapidly, its variants can diffuse internationally and cause successive outbreaks.
Asunto(s)
COVID-19/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Adulto , África del Sur del Sahara/epidemiología , Anciano , Sustitución de Aminoácidos , COVID-19/epidemiología , China/epidemiología , Proteasas Similares a la Papaína de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Femenino , Francia/epidemiología , Genoma Viral , Humanos , Masculino , Persona de Mediana Edad , Mutación , Filogenia , Viaje , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Proteínas Viroporinas/genéticaRESUMEN
We aimed to assess the prevalence of pathogenic bacteria and resistance genes in rectal samples collected among homeless persons in Marseille, France. In February 2014 we enrolled 114 sheltered homeless adults who completed questionnaires and had rectal samples collected. Eight types of enteric bacteria and 15 antibiotic resistance genes (ARGs) were sought by real-time polymerase chain reaction (qPCR) performed directly on rectal samples. ARG-positive samples were further tested by conventional PCR and sequencing. We evidenced a 17.5% prevalence of gastrointestinal symptoms, a 9.6% prevalence of enteric pathogenic bacteria carriage, including Escherichia coli pathotypes (8.7%) and Tropheryma whipplei (0.9%). Only 2 persons carried blaCTX-M-15 resistance genes (1.8%), while other genes, including carbapenemase-encoding genes and colistin-resistance genes, (mcr-1 to mcr-6, mcr-8) were not detected. Our results suggest that sheltered homeless persons in Marseille do not have a high risk of harbouring gastrointestinal antibiotic resistant bacteria.
RESUMEN
From January 18th to August 13th, 2021, 13,804 unvaccinated and 1,156 patients who had received at least one COVID-19 vaccine dose were tested qPCR-positive for SARS-CoV-2 in our center. Among vaccinated patients, 949, 205 and 2 had received a single, two or three vaccine doses, respectively. Most patients (80.3%) had received the Pfizer-BioNTech vaccine. The SARS-CoV-2 variants infecting vaccinated patients varied over time, reflecting those circulating in the Marseille area, with a predominance of the Marseille-4/20A.EU2 variant from weeks 3 to 6, of the Alpha/20I variant from weeks 7 to 25, and of the Delta/21A variant from week 26. SARS-CoV-2 infection was significantly more likely to occur in the first 13 days post-vaccine injection in those who received a single dose (48.9%) than two doses (27.4%, p< 10-3). Among 161 patients considered as fully vaccinated, i.e., >14 days after the completion of the vaccinal scheme (one dose for Johnson and Johnson and two doses for Pfizer/BioNTech, Moderna and Sputnik vaccines), 10 (6.2%) required hospitalization and four (2.5%) died. Risks of complications increased with age in a nonlinear pattern, with a first breakpoint at 54, 33, and 53 years for death, transfer to ICU, and hospitalization, respectively. Among patients infected by the Delta/21A or Alpha/20I variants, partial or complete vaccination exhibited a protective effect with a risk divided by 3.1 for mortality in patients ≥ 55 years, by 2.8 for ICU transfer in patients ≥ 34 years, and by 1.8 for hospitalization in patients ≥ 54 years. Compared to partial vaccination, complete vaccination provided an even stronger protective effect, confirming effectiveness to prevent severe forms of COVID-19.